ﻻ يوجد ملخص باللغة العربية
Under a weak assumption of the existence of a geodesic null congruence, we present the general solution of the Einstein field equations in three dimensions with any value of the cosmological constant, admitting an aligned null matter field, and also gyratons (a matter field in the form of a null dust with an additional internal spin). The general local solution consists of the expanding Robinson-Trautman class and the non-expanding Kundt class. The gyratonic solutions reduce to spacetimes with a pure radiation matter field when the spin is set to zero. Without matter fields, we obtain new forms of the maximally symmetric vacuum solutions. We discuss these complete classes of solutions and their various subclasses. In particular, we identify the gravitational field of an arbitrarily accelerating source (the Kinnersley photon rocket, which reduces to a Vaidya-type non-moving object) in the Robinson-Trautman class, and pp-waves, vanishing scalar invariants (VSI) spacetimes, and constant scalar invariants (CSI) spacetimes in the Kundt class.
We present a general solution of the coupled Einstein-Maxwell field equations (without the source charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant. The whole family of such $Lambda$-electrovacu
We obtain the Einstein-Maxwell equations for (2+1)-dimensional static space-time, which are invariant under the transformation $q_0=i,q_2,q_2=i,q_0,alpha rightleftharpoons gamma$. It is shown that the magnetic solution obtained with the help of the p
The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.
Hawking radiation from an evaporating black hole has often been compared to black body radiation. However, this comparison misses an important feature of Hawking radiation: Its low density of states. This can be captured in an easy to calculate, heur
The main objective of this work, is to show two inequivalent methods to obtain new spherical symmetric solutions of Einsteins Equations with anisotropy in the pressures in isotropic coordinates. This was done inspired by the MGD method, which is know