ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionization correction factors for ionized nebulae

51   0   0.0 ( 0 )
 نشر من قبل Gloria Delgado-Inglada
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we discuss the calculation of chemical abundances in planetary nebulae and H II regions through ionization correction factors (ICFs). We review the first ICFs proposed in the literature based on ionization potential similarities and we present the most recent ICFs derived from large sample of photoionization models. We also discuss some of the considerations that have to be kept in mind when using ICFs to compute the chemical composition of ionized nebulae.



قيم البحث

اقرأ أيضاً

We compute a large grid of photoionization models that covers a wide range of physical parameters and is representative of most of the observed PNe. Using this grid, we derive new formulae for the ionization correction factors (ICFs) of He, O, N, Ne, S, Ar, Cl, and C. Analytical expressions to estimate the uncertainties arising from our ICFs are also provided. This should be useful since these uncertainties are usually not considered when estimating the error bars in element abundances. Our ICFs are valid over a variety of assumptions such as the input metallicities, the spectral energy distribution of the ionizing source, the gas distribution, or the presence of dust grains. Besides, the ICFs are adequate both for large aperture observations and for pencil-beam observations in the central zones of the nebulae. We test our ICFs on a large sample of observed PNe that extends as far as possible in ionization, central star temperature, and metallicity, by checking that the Ne/O, S/O, Ar/O, and Cl/O ratios show no trend with the degree of ionization. Our ICFs lead to significant differences in the derived abundance ratios as compared with previous determinations, especially for N/O, Ne/O, and Ar/O.
We present a new method for inferring the metallicity (Z) and ionization parameter (q) of HII regions and star-forming galaxies using strong nebular emission lines (SEL). We use Bayesian inference to derive the joint and marginalized posterior probab ility density functions for Z and q given a set of observed line fluxes and an input photo-ionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics the method is flexible and not tied to a particular photo-ionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extra-galactic HII regions we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local HII regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photo-ionization models in the literature can be in good (~30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically 0.2 dex lower than both RL and photo-ionization model based abundances.
108 - T. E. Woods , M. Gilfanov 2015
Accreting, steadily nuclear-burning white dwarfs are associated with so-called close-binary supersoft X-ray sources (SSSs), observed to have temperatures of a few$times 10^{5}$K and luminosities on the order of $10^{38}$erg/s. These and other types o f SSSs are expected to be capable of ionizing their surrounding circumstellar medium, however, to date only one such nebula was detected in the Large Magellanic Cloud (of its 6 known close-binary SSSs), surrounding the accreting, nuclear-burning WD CAL 83. This has led to the conclusion that most SSSs cannot have been both luminous ($gtrsim 10^{37}$erg/s) and hot ($gtrsim$ few $times 10^{4}$K) for the majority of their past accretion history, unless the density of the ISM surrounding most sources is much less than that inferred for the CAL 83 nebula (4--10$rm{cm}^{-3}$). Here we demonstrate that most SSSs must lie in much lower density media than CAL 83. Past efforts to detect such nebulae have not accounted for the structure of the ISM in star-forming galaxies and, in particular, for the fact that most of the volume is occupied by low density warm & hot ISM. CAL 83 appears to lie in a region of ISM which is at least $sim 40$-fold overdense. We compute the probability of such an event to be $approx 18%$, in good agreement with observed statistics. We provide a revised model for the typical SSS nebula, and outline the requirements of a survey of the Magellanic clouds which could detect the majority of such objects. We then briefly discuss some of the possible implications, should there prove to be a large population of previously undiscovered ionizing sources.
We present near-infrared (IR) spectra of two planetary nebula (PN) candidates in close lines of sight toward the Galactic center (GC) using the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini North. High-resolution images from radio continuum and narrow-band IR observations reveal ringlike or barrel-shaped morphologies of these objects, and their mid-IR spectra from the Spitzer Space Telescope exhibit rich emission lines from highly-excited species such as [S IV], [Ne III], [Ne V], and [O IV]. We also derive elemental abundances using the Cloudy synthetic models, and find an excess amount of the $s$-process element Krypton in both targets, which supports their nature as PN. We estimate foreground extinction toward each object using near-IR hydrogen recombination lines, and find significant visual extinctions ($A_V > 20$). The distances inferred from the size versus surface brightness relation of other PNe are $9.0pm1.6$ kpc and $7.6pm1.6$ kpc for SSTGC 580183 and SSTGC 588220, respectively. These observed properties along with abundance patterns and their close proximity to Sgr A$^*$ (projected distances $<20$ pc) make it highly probable that these objects are the first confirmed PN objects in the nuclear stellar disk. The apparent scarcity of such objects resembles the extremely low rate of PN formation in old stellar systems, but is in line with the current rate of the sustained star formation activity in the Central Molecular Zone.
We present measurements of the singly ionized helium to hydrogen ratio ($n_{He^+}/n_{H^+}$) toward diffuse gas surrounding three Ultra-Compact HII (UCHII ) regions: G10.15-0.34, G23.46-0.20 & G29.96-0.02. We observe radio recombination lines (RRLs) o f hydrogen and helium near 5 GHz using the GBT to measure the $n_{He^+}/n_{H^+}$ ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium (WIM) and in the inner Galaxy diffuse ionized regions (DIR). Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 & G23.46-0.20 and the upper limits of the $n_{He^+}/n_{H^+}$ ratio obtained are 0.03 and 0.05 respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean $n_{He^+}/n_{H^+}$ value 0.06$pm$0.02. Our data thus show that helium in diffuse gas located a few pc away from the young massive stars embedded in the observed regions is not fully ionized.We investigate the origin of the non-uniform helium ionization and rule out the possibilities : (a) that the helium is doubly ionized in the observed regions and (b) that the low $n_{He^+}/n_{H^+}$ values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars (Smith 2014). We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in HII regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا