ﻻ يوجد ملخص باللغة العربية
We compute a large grid of photoionization models that covers a wide range of physical parameters and is representative of most of the observed PNe. Using this grid, we derive new formulae for the ionization correction factors (ICFs) of He, O, N, Ne, S, Ar, Cl, and C. Analytical expressions to estimate the uncertainties arising from our ICFs are also provided. This should be useful since these uncertainties are usually not considered when estimating the error bars in element abundances. Our ICFs are valid over a variety of assumptions such as the input metallicities, the spectral energy distribution of the ionizing source, the gas distribution, or the presence of dust grains. Besides, the ICFs are adequate both for large aperture observations and for pencil-beam observations in the central zones of the nebulae. We test our ICFs on a large sample of observed PNe that extends as far as possible in ionization, central star temperature, and metallicity, by checking that the Ne/O, S/O, Ar/O, and Cl/O ratios show no trend with the degree of ionization. Our ICFs lead to significant differences in the derived abundance ratios as compared with previous determinations, especially for N/O, Ne/O, and Ar/O.
In this paper we discuss the calculation of chemical abundances in planetary nebulae and H II regions through ionization correction factors (ICFs). We review the first ICFs proposed in the literature based on ionization potential similarities and we
Planetary nebulae (PNe) were expected to be filled with hot pressurized gas driving their expansion. ROSAT hinted at the presence of diffuse X-ray emission from these hot bubbles and detected the first sources of hard X-ray emission from their centra
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attache
It has recently been noted that there seems to be a strong correlation between planetary nebulae with close binary central stars, and highly enhanced recombination line abundances. We present new deep spectra of seven objects known to have close bina
We present the results of a comprehensive, near-UV-to-near-IR Hubble Space Telescope WFC3 imaging study of the young planetary nebula (PN) NGC 6302, the archetype of the class of extreme bi-lobed, pinched-waist PNe that are rich in dust and molecular