ترغب بنشر مسار تعليمي؟ اضغط هنا

IZI: Inferring the Gas Phase Metallicity (Z) and Ionization Parameter (q) of Ionized Nebulae using Bayesian Statistics

82   0   0.0 ( 0 )
 نشر من قبل Guillermo A Blanc
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method for inferring the metallicity (Z) and ionization parameter (q) of HII regions and star-forming galaxies using strong nebular emission lines (SEL). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photo-ionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics the method is flexible and not tied to a particular photo-ionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extra-galactic HII regions we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local HII regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photo-ionization models in the literature can be in good (~30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically 0.2 dex lower than both RL and photo-ionization model based abundances.



قيم البحث

اقرأ أيضاً

In this paper we discuss the calculation of chemical abundances in planetary nebulae and H II regions through ionization correction factors (ICFs). We review the first ICFs proposed in the literature based on ionization potential similarities and we present the most recent ICFs derived from large sample of photoionization models. We also discuss some of the considerations that have to be kept in mind when using ICFs to compute the chemical composition of ionized nebulae.
96 - N. Vale Asari 2021
Estimates of gas-phase abundances based on strong-line methods have been calibrated for H~{scshape ii} regions. Those methods ignore any contribution from the diffuse ionized gas (DIG), which shows enhanced collisional-to-recombination line ratios in comparison to H~{scshape ii} regions of the same metallicity. Applying strong line methods whilst ignoring the role of the DIG thus systematically overestimates metallicities. Using integral field spectroscopy data, we show how to correct for the DIG contribution and how it biases the mass--metallicity--star formation rate relation.
The ionization state and oxygen abundance distribution in a sample of polar-ring galaxies (PRGs) were studied from the long-slit spectroscopic observations carried out with the SCORPIO-2 focal reducer at the Russian 6-m telescope. The sample consists of 15 PRGs classified as `the best candidates in the SDSS-based Polar Ring Catalogue. The distributions of line-of-sight velocities of stellar and gaseous components have given kinematic confirmation of polar structures in 13 galaxies in the sample. We show that ionization by young stars dominates in the external parts of polar discs, while shocks have a significant contribution to gas excitation in the inner parts of polar structures. This picture was predicted earlier in a toy model implying the collision between gaseous clouds on polar orbits with the stellar disc gravitational potential well. The exception is a moderately inclined ring to the host galaxy NGC 5014: the accreted gas in the centre has already settled on the main plane and ionized by young stars, while the gas in the internal part of the ring is excited by shocks. The present study three times increases the number of polar structures with an available oxygen abundance estimation. The measured values of the gas metallicity almost do not depend on the galaxy luminosity. The radial [O/H] gradient in the considered polar rings is shallow or absent. No metal-poor gas was detected. We ruled out the scenario of the formation of polar rings due to cold accretion from cosmic filaments for the considered sample of PRGs.
We present measurements of the singly ionized helium to hydrogen ratio ($n_{He^+}/n_{H^+}$) toward diffuse gas surrounding three Ultra-Compact HII (UCHII ) regions: G10.15-0.34, G23.46-0.20 & G29.96-0.02. We observe radio recombination lines (RRLs) o f hydrogen and helium near 5 GHz using the GBT to measure the $n_{He^+}/n_{H^+}$ ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium (WIM) and in the inner Galaxy diffuse ionized regions (DIR). Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 & G23.46-0.20 and the upper limits of the $n_{He^+}/n_{H^+}$ ratio obtained are 0.03 and 0.05 respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean $n_{He^+}/n_{H^+}$ value 0.06$pm$0.02. Our data thus show that helium in diffuse gas located a few pc away from the young massive stars embedded in the observed regions is not fully ionized.We investigate the origin of the non-uniform helium ionization and rule out the possibilities : (a) that the helium is doubly ionized in the observed regions and (b) that the low $n_{He^+}/n_{H^+}$ values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars (Smith 2014). We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in HII regions.
75 - Fabio Bresolin 2016
We present spectra of 14 A-type supergiants in the metal-rich spiral galaxy M83. We derive stellar parameters and metallicities, and measure a spectroscopic distance modulus m-M = 28.47 +- 0.10 (4.9 +- 0.2 Mpc), in agreement with other methods. We us e the stellar characteristic metallicity of M83 and other systems to discuss a version of the galaxy mass-metallicity relation that is independent of the analysis of nebular emission lines and the associated systematic uncertainties. We reproduce the radial metallicity gradient of M83, which flattens at large radii, with a chemical evolution model, constraining gas inflow and outflow processes. We carry out a comparative analysis of the metallicities we derive from the stellar spectra and published HII region line fluxes, utilizing both the direct, Te-based method and different strong-line abundance diagnostics. The direct abundances are in relatively good agreement with the stellar metallicities, once we apply a modest correction to the nebular oxygen abundance due to depletion onto dust. Popular empirically calibrated strong-line diagnostics tend to provide nebular abundances that underestimate the stellar metallicities above the solar value by ~0.2 dex. This result could be related to difficulties in selecting calibration samples at high metallicity. The O3N2 method calibrated by Pettini and Pagel gives the best agreement with our stellar metallicities. We confirm that metal recombination lines yield nebular abundances that agree with the stellar abundances for high metallicity systems, but find evidence that in more metal-poor environments they tend to underestimate the stellar metallicities by a significant amount, opposite to the behavior of the direct method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا