ﻻ يوجد ملخص باللغة العربية
Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretically known and given by the adiabatic gauge potential, obtaining and implementing this potential in many-body systems is a formidable task, requiring knowledge of the spectral properties of the instantaneous Hamiltonians and control of highly nonlocal multibody interactions. We show how an approximate gauge potential can be systematically built up as a series of nested commutators, remaining well-defined in the thermodynamic limit. Furthermore, the resulting CD driving protocols can be realized up to arbitrary order without leaving the available control space using tools from periodically-driven (Floquet) systems. This is illustrated on few- and many-body quantum systems, where the resulting Floquet protocols significantly suppress dissipation and provide a drastic increase in fidelity.
We propose a `Floquet engineering formalism to systematically design a periodic driving protocol in order to stroboscopically realize the desired system starting from a given static Hamiltonian. The formalism is applicable to quantum systems which ha
The presence of quantum scars, athermal eigenstates of a many-body Hamiltonian with finite energy density, leads to absence of ergodicity and long-time coherent dynamics in closed quantum systems starting from simple initial states. Such non-ergodic
A scheme for arbitrary quantum state engineering (QSE) in three-state systems is proposed. Firstly, starting from a set of complete orthogonal time-dependent basis with undetermined coefficients, a time-dependent Hamiltonian is derived via Counterdia
We introduce a new approach for the robust control of quantum dynamics of strongly interacting many-body systems. Our approach involves the design of periodic global control pulse sequences to engineer desired target Hamiltonians that are robust agai
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter