ﻻ يوجد ملخص باللغة العربية
A scheme for arbitrary quantum state engineering (QSE) in three-state systems is proposed. Firstly, starting from a set of complete orthogonal time-dependent basis with undetermined coefficients, a time-dependent Hamiltonian is derived via Counterdiabatic driving for the purpose of guiding the system to attain an arbitrary target state at a predefined time. Then, on request of the assumed target states, two single-mode driving protocols and a multi-mode driving protocol are proposed as examples to discuss the validity of the QSE scheme. The result of comparison between single-mode driving and multi-mode driving shows that multi-mode driving seems to have a wider rang of application prospect because it can drive the system to an arbitrary target state from an arbitrary initial state also at a predefined time even without the use of microwave fields for the transition between the two ground states. Moreover, for the purpose of discussion in the schemes feasibility in practice, a polynomial ansatz as the simplest exampleis used to fix the pulses. The result shows that the pulses designed to implement the protocols are not hard to be realized in practice. At the end, QSE in higher-dimensional systems is also discussed in brief as a generalization example of the scheme.
Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretica
We investigate a possibility to generate non-classical states in light-matter coupled noisy quantum systems, namely the anisotropic Rabi and Dicke models. In these hybrid quantum systems a competing influence of coherent internal dynamics and environ
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme
We introduce a simple yet versatile protocol to inverse engineer the time-dependent Hamiltonian in two- and three level systems. In the protocol, by utilizing a universal SU(2) transformation, a given speedup goal can be obtained with large freedom t
The quantum Zeno effect is well-known for fixing a system to an eigenstate by frequent measurements. It is also known that applying frequent unitary pulses induces a Zeno subspace that can also pin the system to an eigenspace. Both approaches have be