ﻻ يوجد ملخص باللغة العربية
The presence of quantum scars, athermal eigenstates of a many-body Hamiltonian with finite energy density, leads to absence of ergodicity and long-time coherent dynamics in closed quantum systems starting from simple initial states. Such non-ergodic coherent dynamics, where the system does not explore its entire phase space, has been experimentally observed in a chain of ultracold Rydberg atoms. We show, via study of a periodically driven Rydberg chain, that the drive frequency acts as a tuning parameter for several reentrant transitions between ergodic and non-ergodic regimes. The former regime shows rapid thermalization of correlation functions and absence of scars in the spectrum of the systems Floquet Hamiltonian. The latter regime, in contrast, has scars in its Floquet spectrum which control the long-time coherent dynamics of correlation functions. Our results open a new possibility of drive frequency-induced tuning between ergodic and non-ergodic dynamics in experimentally realizable disorder-free quantum many-body systems.
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc
Recent discovery of persistent revivals in quantum simulators based on Rydberg atoms have pointed to the existence of a new type of dynamical behavior that challenged the conventional paradigms of integrability and thermalization. This novel collecti
We analyze quantum dynamics of strongly interacting, kinetically constrained many-body systems. Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after quantum quenches in Rydberg atom arrays, we introduce a manif
The theory of quantum scarring -- a remarkable violation of quantum unique ergodicity -- rests on two complementary pillars: the existence of unstable classical periodic orbits and the so-called quasimodes, i.e., the non-ergodic states that strongly
We study the eigenstate properties of a nonintegrable spin chain that was recently realized experimentally in a Rydberg-atom quantum simulator. In the experiment, long-lived coherent many-body oscillations were observed only when the system was initi