ﻻ يوجد ملخص باللغة العربية
This paper mainly contributes to a classification of statistical Einstein manifolds, namely statistical manifolds at the same time are Einstein manifolds. A statistical manifold is a Riemannian manifold, each of whose points is a probability distribution. With the Fisher information metric as a Riemannian metric, information geometry was developed to understand the intrinsic properties of statistical models, which play important roles in statistical inference, etc. Among all these models, exponential families is one of the most important kinds, whose geometric structures are fully determined by their potential functions. To classify statistical Einstein manifolds, we derive partial differential equations for potential functions of exponential families; special solutions of these equations are obtained through the ansatz method as well as group-invariant solutions via reductions using Lie point symmetries.
We define and study multivariate exponential functions, symmetric with respect to the alternating group A_n, which is a subgroup of the permutation (symmetric) group S_n. These functions are connected with multivariate exponential functions, determin
We consider the focusing nonlinear Schrodinger equation on a large class of rotationally symmetric, noncompact manifolds. We prove the existence of a solitary wave by perturbing off the flat Euclidean case. Furthermore, we study the stability of the
Let $G$ be a compact Lie group acting smoothly on a smooth, compact manifold $M$, let $P in psi^m(M; E_0, E_1)$ be a $G$--invariant, classical pseudodifferential operator acting between sections of two vector bundles $E_i to M$, $i = 0,1$, and let $a
The properties of the four families of special functions of three real variables, called here C-, S-, S^s- and S^l-functions, are studied. The S^s- and S^l-functions are considered in all details required for their exploitation in Fourier expansions
We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincare equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels map). This