ﻻ يوجد ملخص باللغة العربية
We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincare equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with $2$-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.
The paper is devoted to the analysis of the blow-ups of derivatives, gradient catastrophes and dynamics of mappings of $mathbb{R}^n to mathbb{R}^n$ associated with the $n$-dimensional homogeneous Euler equation. Several characteristic features of the
We analyze an elastic surface energy which was recently introduced by G. Napoli and L.Vergori to model thin films of nematic liquid crystals. We show how a novel approach that takes into account also the extrinsic properties of the surfaces coated by
In this paper, I describe the weak limits of the measures associated to the eigenfunctions of the Laplacian on a Quantum graph for a generic metric in terms of the Gauss map of the determinant manifold. I describe also all the limits with minimal support (the scars).
Essentially generalizing Lies results, we prove that the contact equivalence groupoid of a class of (1+1)-dimensional generalized nonlinear Klein-Gordon equations is the first-order prolongation of its point equivalence groupoid, and then we carry ou
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is require