ﻻ يوجد ملخص باللغة العربية
We consider the focusing nonlinear Schrodinger equation on a large class of rotationally symmetric, noncompact manifolds. We prove the existence of a solitary wave by perturbing off the flat Euclidean case. Furthermore, we study the stability of the solitary wave under radial perturbations by analyzing spectral properties of the associated linearized operator. Finally, in the L2-critical case, by considering the Vakhitov-Kolokolov criterion (see also results of Grillakis-Shatah-Strauss), we provide numerical evidence showing that the introduction of a nontrivial geometry destabilizes the solitary wave in a wide variety of cases, regardless of the curvature of the manifold. In particular, the parameters of the metric corresponding to standard hyperbolic space will lead to instability consistent with the blow-up results of Banica-Duyckaerts (2015). We also provide numerical evidence for geometries under which it would be possible for the Vakhitov-Kolokolov condition to suggest stability, provided certain spectral properties hold in these spaces
We study the existence and stability of ground state solutions or solitons to a nonlinear stationary equation on hyperbolic space. The method of concentration compactness applies and shows that the results correlate strongly to those of Euclidean space.
In this article we study a class of prescribed curvature problems on complete noncompact Riemannian manifolds. To be precise, we derive local $C^0$-estimate under an asymptotic condition which is in effect optimal, and prove the existence of complete
This paper mainly contributes to a classification of statistical Einstein manifolds, namely statistical manifolds at the same time are Einstein manifolds. A statistical manifold is a Riemannian manifold, each of whose points is a probability distribu
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton cite{Ha1}. Later on, De Turck cite{De} gave a simplified proof. In the lat
Hopf solitons in the Skyrme-Faddeev system on $R^3$ typically have a complicated structure, in particular when the Hopf number Q is large. By contrast, if we work on a compact 3-manifold M, and the energy functional consists only of the Skyrme term (