ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the open-loop and weak closed-loop solvabilities of stochastic linear quadratic (LQ, for short) optimal control problem of Markovian regime switching system. Interestingly, these two solvabilities are equivalent. We first provide an alternative characterization of the open-loop solvability of the LQ problem using the perturbation approach. Then, we study the weak closed-loop solvability of the LQ problem of Markovian regime switching system, and establish the equivalent relationship between open-loop and weak closed-loop solvabilities. Finally, we present an example to illustrate the procedure for finding weak closed-loop optimal strategies within the framework of Markovian regime switching system.
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process
We provide an exhaustive treatment of Linear-Quadratic control problems for a class of stochastic Volterra equations of convolution type, whose kernels are Laplace transforms of certain signed matrix measures which are not necessarily finite. These e
In this paper we study the optimal stochastic control problem for stochastic differential systems reflected in a domain. The cost functional is a recursive one, which is defined via generalized backward stochastic differential equations developed by
This paper presents a state and state-input constrained variant of the discrete-time iterative Linear Quadratic Regulator (iLQR) algorithm, with linear time-complexity in the number of time steps. The approach is based on a projection of the control
This paper applies a reinforcement learning (RL) method to solve infinite horizon continuous-time stochastic linear quadratic problems, where drift and diffusion terms in the dynamics may depend on both the state and control. Based on Bellmans dynami