ﻻ يوجد ملخص باللغة العربية
This paper applies a reinforcement learning (RL) method to solve infinite horizon continuous-time stochastic linear quadratic problems, where drift and diffusion terms in the dynamics may depend on both the state and control. Based on Bellmans dynamic programming principle, an online RL algorithm is presented to attain the optimal control with just partial system information. This algorithm directly computes the optimal control rather than estimating the system coefficients and solving the related Riccati equation. It just requires local trajectory information, greatly simplifying the calculation processing. Two numerical examples are carried out to shed light on our theoretical findings.
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process
In this paper, we aim to solve the high dimensional stochastic optimal control problem from the view of the stochastic maximum principle via deep learning. By introducing the extended Hamiltonian system which is essentially an FBSDE with a maximum co
We are concerned with the linear-quadratic optimal stochastic control problem with random coefficients. Under suitable conditions, we prove that the value field $V(t,x,omega), (t,x,omega)in [0,T]times R^ntimes Omega$, is quadratic in $x$, and has the
The linear-quadratic regulator (LQR) is an efficient control method for linear and linearized systems. Typically, LQR is implemented in minimal coordinates (also called generalized or joint coordinates). However, other coordinates are possible and re
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide