ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical control of solitons in a parity-time-symmetric coupler by periodic management

102   0   0.0 ( 0 )
 نشر من قبل Zhiwei Fan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a dual-core nonlinear waveguide with the parity-time (PT) symmetry, realized in the form of equal gain and loss terms carried by the coupled cores. To expand a previously found stability region for solitons in this system, and explore possibilities for the development of dynamical control of the solitons, we introduce management in the form of periodic sinusoidal variation of the loss-gain (LG) coefficients, along with synchronous variation of the inter-core coupling (ICC) constant. This system, which can be realized in optics (in the temporal and spatial domains alike), features strong robustness when amplitudes of the variation of the LG and ICC coefficients keep a ratio equal to that of their constant counterparts, allowing one to find exact solutions for PT-symmetric solitons. A stability region for the solitons is identified in terms of the management amplitude and period, as well as the solitons amplitude. In the long-period regime, the solitons evolve adiabatically, making it possible to predict their stability boundaries in an analytical form. The system keeping the Galilean invariance, collisions between moving solitons are considered too.



قيم البحث

اقرأ أيضاً

We report the role of $mathcal{PT}$-symmetry in switching characteristics of a highly nonlinear fiber Bragg grating (FBG) with cubic-quintic-septic nonlinearities. We demonstrate that the device shows novel bi-(multi-) stable states in the broken reg ime as a direct consequence of the shift in the photonic band gap influenced by both $mathcal{PT}$-symmetry and higher-order nonlinearities. We also numerically depict that such FBGs provide a productive test bed where the broken $mathcal{PT}$-symmetric regime can be exploited to set up all-optical applications such as binary switches, multi-level signal processing and optical computing. Unlike optical bistability (OB) in the traditional and unbroken $mathcal{PT}$-symmetric FBG, it exhibits many peculiar features such as flat-top stable states and ramp like input-output characteristics before the onset of OB phenomenon in the broken regime. The gain/loss parameter plays a dual role in controlling the switching intensities between the stable states which is facilitated by reversing the direction of light incidence. We also find that the gain/loss parameter tailors the formation of gap solitons pertaining to transmission resonances which clearly indicates that it can be employed to set up optical storage devices. Moreover, the interplay between gain/loss and higher order nonlinearities brings notable changes in the nonlinear reflection spectra of the system under constant pump powers. The influence of each control parameters on the switching operation is also presented in a nutshell to validate that FBG offers more degrees of freedom in controlling light with light.
We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms . We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anti-continuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, on the contrary of the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.
In this work, we propose a PT-symmetric coupler whose arms are birefringent waveguides as a realistic physical model which leads to a so-called quadrimer i.e., a four complex field setting. We seek stationary solutions of the resulting linear and non linear model, identifying its linear point of PT symmetry breaking and examining the corresponding nonlinear solutions that persist up to this point, as well as, so-called, ghost states that bifurcate from them. We obtain the relevant symmetry breaking bifurcations and numerically follow the associated dynamics which give rise to growth/decay even within the PT-symmetric phase. Our obtained stationary nonlinear solutions are found to terminate in saddle-center bifurcations which are analogous to the linear PT-phase transition.
Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the pr esence of an imaginary potential. The instability manifests itself as a lateral drift of solitons due to an unbalanced particle flux. We also demonstrate that the perturbation growth rate is proportional to the amount of gain (loss), thus predicting the observability of stable gap solitons for small imaginary potentials.
286 - Nir Dror , Boris A. Malomed 2011
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single {delta}-function or a combination of two {delta}-functions. This model gives rise to ordinary solitons or gap solitons (GSs), which reside, respectively, in the semi-infinite or finite gaps of the systems linear spectrum, being pinned to the {delta}-functions. Physical realizations of these systems are possible in optics and BEC, using diverse variants of the nonlinearity management. First, we demonstrate that the single {delta}-function multiplying the nonlinear term supports families of stable regular solitons in the self-attractive case, while a family of solitons supported by the attractive {delta}-function in the absence of the periodic potential is completely unstable. We also show that the {delta}-function can support stable GSs in the first finite gap in both the self-attractive and repulsive models. The stability analysis for the GSs in the second finite gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single {delta}-function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two {delta}-functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the {delta}-functions set symmetrically with respect to the minimum or maximum of the potential.
التعليقات (0)
لا يوجد تعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا