ﻻ يوجد ملخص باللغة العربية
Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the presence of an imaginary potential. The instability manifests itself as a lateral drift of solitons due to an unbalanced particle flux. We also demonstrate that the perturbation growth rate is proportional to the amount of gain (loss), thus predicting the observability of stable gap solitons for small imaginary potentials.
We report the role of $mathcal{PT}$-symmetry in switching characteristics of a highly nonlinear fiber Bragg grating (FBG) with cubic-quintic-septic nonlinearities. We demonstrate that the device shows novel bi-(multi-) stable states in the broken reg
We present a unified theoretical study of the bright solitons governed by self-focusing and defocusing nonlinear Schrodinger (NLS) equations with generalized parity-time (PT)-symmetric Scarff II potentials. Particularly, a PT-symmetric k-wavenumber S
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the sol
We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms
We study the existence of one-dimensional localized states supported by linear periodic potentials and a domain-wall-like Kerr nonlinearity. The model gives rise to several new types of asymmetric localized states, including single- and double-hump s