ﻻ يوجد ملخص باللغة العربية
Twisted skyrmions, whose helicity angles are different from that of Bloch skyrmions and Neel skyrmions, have already been demonstrated in experiments recently. In this work, we first contrast the magnetic structure and origin of the twisted skyrmion with other three types of skyrmion including Bloch skyrmion, Neel skyrmion and antiskyrmion. Following, we investigate the dynamics of twisted skyrmions driven by the spin transfer toque (STT) and the spin Hall effect (SHE) by using micromagnetic simulations. It is found that the spin Hall angle of the twisted skyrmion is related to the dissipative force tensor and the Gilbert damping both for the motions induced by the STT and the SHE, especially for the SHE induced motion, the skyrmion Hall angle depends substantially on the skyrmion helicity. At last, we demonstrate that the trajectory of the twisted skyrmion can be controlled in a two dimensional plane with a Gilbert damping gradient. Our results provide the understanding of current-induced motion of twisted skyrmions, which may contribute to the applications of skyrmion-based racetrack memories.
Magnetic skyrmions are nanoscale windings of the spin configuration that hold great promise for technology due to their topology-related properties and extremely reduced sizes. After the recent observation at room temperature of sub-100 nm skyrmions
We demonstrate room-temperature stabilization of dipolar magnetic skyrmions with diameters in the range of $100$ nm in a single ultrathin layer of the Heusler alloy Co$_2$FeAl (CFA) under moderate magnetic fields. Current-induced skyrmion dynamics in
Magnetic skyrmions in 2D chiral magnets are in general stabilized by a combination of Dzyaloshinskii-Moriya interaction and external magnetic field. Here, we show that skyrmions can also be stabilized in twisted moire superlattices in the absence of
In this work, we study the microscopic dynamics of distorted skyrmions in strained chiral magnets [K. Shibata et al., Nat. Nanotech. 10, 589 (2015)] under gradient magnetic field or electric current by Landau-Lifshitz-Gilbert simulations of the aniso
Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Neel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to