ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are nanoscale windings of the spin configuration that hold great promise for technology due to their topology-related properties and extremely reduced sizes. After the recent observation at room temperature of sub-100 nm skyrmions stabilized by interfacial chiral interaction in magnetic multilayers, several pending questions remain to be solved, notably about the means to nucleate individual compact skyrmions or the exact nature of their motion. In this study, a method leading to the formation of magnetic skyrmions in a micrometer-sized nanotrack using homogeneous current injection is evidenced. Spin-transfer-induced motion of these small electricalcurrent-generated skyrmions is then demonstrated and the role of the out-of-plane magnetic field in the stabilization of the moving skyrmions is also analysed. The results of these experimental observations of spin torque induced motion are compared to micromagnetic simulations reproducing a granular type, non-uniform magnetic multilayer, in order to address the particularly important role of the magnetic inhomogeneities on the current-induced motion of sub-100 nm skyrmions, for which the material grains size is comparable to the skyrmion diameter.
Twisted skyrmions, whose helicity angles are different from that of Bloch skyrmions and Neel skyrmions, have already been demonstrated in experiments recently. In this work, we first contrast the magnetic structure and origin of the twisted skyrmion
Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magn
Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vig
We study how impurities influence the current-induced dynamics of magnetic Skyrmions moving in a racetrack geometry. For this, we solve numerically the generalized Landau-Lifshitz-Gilbert equation extended by the current-induced spin transfer torque.
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments st