ﻻ يوجد ملخص باللغة العربية
Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Neel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy (MFM) images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portends broad applicability in the burgeoning field of topological spin textures.
Magnetic skyrmions are nanoscale spin structures recently discovered at room temperature (RT) in multilayer films. Employing their novel topological properties towards exciting technological prospects requires a mechanistic understanding of the excit
Magnetic skyrmions are chiral spin structures that have recently been observed at room temperature (RT) in multilayer thin films. Their topological stability should enable high scalability in confined geometries - a sought-after attribute for device
Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vig
Nanowires can serve as flexible substrates for hybrid epitaxial growth on selected facets, allowing for design of heterostructures with complex material combinations and geometries. In this work we report on hybrid epitaxy of semiconductor - ferromag
Spin-orbit-torque (SOT) induced magnetization switching in Co/Pt/Co trilayer, with two Co layers exhibiting magnetization easy axes orthogonal to each other is investigated. Pt layer is used as a source of spin-polarized current as it is characterize