ﻻ يوجد ملخص باللغة العربية
This paper addresses the three concepts of textit{ consistency, stability and convergence } in the context of compact finite volume schemes for systems of nonlinear hyperbolic conservation laws. The treatment utilizes the framework of balance laws. Such laws express the relevant physical conservation laws in the presence of discontinuities. Finite volume approximations employ this viewpoint, and the present paper can be regarded as being in this category. It is first shown that under very mild conditions a weak solution is indeed a solution to the balance law. The schemes considered here allow the computation of several quantities per mesh cell (e.g., slopes) and the notion of consistency must be extended to this framework. Then a suitable convergence theorem is established, generalizing the classical convergence theorem of Lax and Wendroff. Finally, the limit functions are shown to be entropy solutions by using a notion of Godunov compatibility, which serves as a substitute to the entropy condition.
We present a (partial) historical summary of the mathematical analysis of finite differences and finite volumes methods, paying a special attention to the Lax-Richtmyer and Lax-Wendroff theorems. We then state a Lax-Wendroff consistency result for co
In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite elemen
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws. The basic idea is that the meaningful objects are the fluxes, evaluated across domain boundaries over t
The Cauchy-Kowalewskaya (CK) procedure is a key building block in the design of solvers for the Generalised Rieman Problem (GRP) based on Taylor series expansions in time. The CK procedure allows us to express time derivatives in terms of purely spac
We consider entropy solutions to the initial value problem associated with scalar nonlinear hyperbolic conservation laws posed on the two-dimensional sphere. We propose a finite volume scheme which relies on a web-like mesh made of segments of longit