ﻻ يوجد ملخص باللغة العربية
We present a (partial) historical summary of the mathematical analysis of finite differences and finite volumes methods, paying a special attention to the Lax-Richtmyer and Lax-Wendroff theorems. We then state a Lax-Wendroff consistency result for convection operators on staggered grids (often used in fluid flow simulations), which illustrates a recent generalization of the flux consistency notion designed to cope with general discrete functions.
This paper addresses the three concepts of textit{ consistency, stability and convergence } in the context of compact finite volume schemes for systems of nonlinear hyperbolic conservation laws. The treatment utilizes the framework of balance laws. S
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization te
The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are often used to reduce computational co
We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass cons
A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invarian