ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of Adaptive Finite Element Approximations for Nonlinear Eigenvalue Problems

167   0   0.0 ( 0 )
 نشر من قبل Aihui Zhou
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.



قيم البحث

اقرأ أيضاً

115 - Andrea Bonito , Alan Demlow 2015
Proofs of convergence of adaptive finite element methods for the approximation of eigenvalues and eigenfunctions of linear elliptic problems have been given in a several recent papers. A key step in establishing such results for multiple and clustere d eigenvalues was provided by Dai et. al. (2014), who proved convergence and optimality of AFEM for eigenvalues of multiplicity greater than one. There it was shown that a theoretical (non-computable) error estimator for which standard convergence proofs apply is equivalent to a standard computable estimator on sufficiently fine grids. Gallistl (2015) used a similar tool in order to prove that a standard adaptive FEM for controlling eigenvalue clusters for the Laplacian using continuous piecewise linear finite element spaces converges with optimal rate. When considering either higher-order finite element spaces or non-constant diffusion coefficients, however, the arguments of Dai et. al. and Gallistl do not yield equivalence of the practical and theoretical estimators for clustered eigenvalues. In this note we provide this missing key step, thus showing that standard adaptive FEM for clustered eigenvalues employing elements of arbitrary polynomial degree converge with optimal rate. We additionally establish that a key user-defined input parameter in the AFEM, the bulk marking parameter, may be chosen entirely independently of the properties of the target eigenvalue cluster. All of these results assume a fineness condition on the initial mesh in order to ensure that the nonlinearity is sufficiently resolved.
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms.
50 - Alan Demlow 2016
Numerical computation of harmonic forms (typically called harmonic fields in three space dimensions) arises in various areas, including computer graphics and computational electromagnetics. The finite element exterior calculus framework also relies e xtensively on accurate computation of harmonic forms. In this work we study the convergence properties of adaptive finite element methods (AFEM) for computing harmonic forms. We show that a properly defined AFEM is contractive and achieves optimal convergence rate beginning from any initial conforming mesh. This result is contrasted with related AFEM convergence results for elliptic eigenvalue problems, where the initial mesh must be sufficiently fine in order for AFEM to achieve any provable convergence rate.
This paper addresses the three concepts of textit{ consistency, stability and convergence } in the context of compact finite volume schemes for systems of nonlinear hyperbolic conservation laws. The treatment utilizes the framework of balance laws. S uch laws express the relevant physical conservation laws in the presence of discontinuities. Finite volume approximations employ this viewpoint, and the present paper can be regarded as being in this category. It is first shown that under very mild conditions a weak solution is indeed a solution to the balance law. The schemes considered here allow the computation of several quantities per mesh cell (e.g., slopes) and the notion of consistency must be extended to this framework. Then a suitable convergence theorem is established, generalizing the classical convergence theorem of Lax and Wendroff. Finally, the limit functions are shown to be entropy solutions by using a notion of Godunov compatibility, which serves as a substitute to the entropy condition.
110 - Yanli Chen , Peijun Li , 2020
Consider the electromagnetic scattering of a time-harmonic plane wave by an open cavity which is embedded in a perfectly electrically conducting infinite ground plane. This paper is concerned with the numerical solutions of the transverse electric an d magnetic polarizations of the open cavity scattering problems. In each polarization, the scattering problem is reduced equivalently into a boundary value problem of the two-dimensional Helmholtz equation in a bounded domain by using the transparent boundary condition (TBC). An a posteriori estimate based adaptive finite element method with the perfectly matched layer (PML) technique is developed to solve the reduced problem. The estimate takes account both of the finite element approximation error and the PML truncation error, where the latter is shown to decay exponentially with respect to the PML medium parameter and the thickness of the PML layer. Numerical experiments are presented and compared with the adaptive finite element TBC method for both polarizations to illustrate the competitive behavior of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا