ﻻ يوجد ملخص باللغة العربية
In the field of spintronics, ferromagnetic/non-magnetic metallic multilayers are core building blocks for emerging technologies. Resonance experiments using stripline transducers are commonly used to characterize and engineer these stacks for applications. Up to now in these experiments, the influence of eddy currents on the excitation of the dynamics of ferromagnetic magnetization below the skin-depth limit was most often neglected. Here, using a coplanar stripline transducer, we experimentally investigated the broadband ferromagnetic resonance response of NiFe/Cu bilayers a few nanometers thick in the sub-skin-depth regime. Asymmetry in the absorption spectrum gradually built up as the excitation frequency and Cu-layer thickness increased. Most significantly, the sign of the asymmetry depended on the stacking order. Experimental data were consistent with a quantitative analysis considering eddy currents generated in the Cu layers and the subsequent phaseshift of the feedback magnetic field generated by the eddy currents. These results extend our understanding of the impact of eddy currents below the microwave magnetic skin-depth and explain the lineshape asymmetry and phase lags reported in stripline experiments.
We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnet
Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particle-like properties and feature emergent magnetism effects. In bulk cubic heli-magnets, distinct skyrmion resonant modes are already identified using a techniq
Thermal effects contributing to the Casimir interaction between objects are usually small at room temperature and they are difficult to separate from quantum mechanical contributions at higher temperatures. We propose that the thermal Casimir force e
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacki
We report markedly different transport properties of ABA- and ABC-stacked trilayer graphenes. Our experiments in double-gated trilayer devices provide evidence that a perpendicular electric field opens an energy gap in the ABC trilayer, while it caus