ﻻ يوجد ملخص باللغة العربية
We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnetization reversal sequence of the two ferromagnetic layers is found to depend on the type of NiFe alloy. In the samples with 75% relative content of Ni, the bottom ferromagnetic layer reverses prior to the top one. On the contrary, in the samples with 40% of Ni, the top ferromagnetic layer reverses prior to the bottom one. These tendencies of magnetization reversal are preserved in the entire range of temperatures. These distinctions can be explained by the morphological and structural differences of interfaces in the samples based on two types of Permalloy.
We demonstrate how the configuration and magnitude of a magnetic field, applied during magnetron sputtering of a NiFe/IrMn bilayer, influence the magnetic properties of the structure, such as hysteresis loop shape, coercivity, and exchange bias. Furt
In the field of spintronics, ferromagnetic/non-magnetic metallic multilayers are core building blocks for emerging technologies. Resonance experiments using stripline transducers are commonly used to characterize and engineer these stacks for applica
We experimentally investigate spin-orbit torques and spin pumping in NiFe/Pt bilayers with direct and interrupted interfaces. The damping-like and field-like torques are simultaneously measured with spin-torque ferromagnetic resonance tuned by a dc b
Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments, sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn bilayer in which areas with different exchange bias fields were prepared using 5 KeV He ion irrad
Based on the modified Landau-Lifshitz-Gilbert equation for an arbitrary Stoner particle under an external magnetic field and a spin-polarized electric current, differential equations for the optimal reversal trajectory, along which the magnetization