ﻻ يوجد ملخص باللغة العربية
We study reduction schemes for functions of many variables into system of functions in one variable. Our setting includes infinite-dimensions. Following Cybenko-Kolmogorov, the outline for our results is as follows: We present explicit reductions schemes for multivariable problems, covering both a finite, and an infinite, number of variables. Starting with functions in many variables, we offer constructive reductions into superposition, with component terms, that make use of only functions in one variable, and specified choices of coordinate directions. Our proofs are transform based, using explicit transforms, Fourier and Radon; as well as multivariable Shannon interpolation.
Nonstandard ergodic averages can be defined for a measure-preserving action of a group on a probability space, as a natural extension of classical (nonstandard) ergodic averages. We extend the one-dimensional theory, obtaining L^1 pointwise ergodic t
We describe a model element able to perform universal stochastic approximations of continuous multivariable functions in both neuron-like and quantum form. The implementation of this model in the form of a multi-barrier, multiple-slit system is propo
We present a well-structured detailed exposition of a well-known proof of the following celebrated result solving Hilberts 13th problem on superpositions. For functions of 2 variables the statement is as follows. Kolmogorov Theorem. There are conti
We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to facto
Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every pos