ﻻ يوجد ملخص باللغة العربية
We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to factorization for p.d. kernels is intuitively motivated by matrix factorizations, but in infinite dimensions, subtle measure theoretic issues must be addressed. Consider a given p.d. kernel $K$, presented as a covariance kernel for a Gaussian process $V$. We then give an explicit duality for these two seemingly different notions of factorization, for p.d. kernel $K$, vs for Gaussian process $V$. Our result is in the form of an explicit correspondence. It states that the analytic data which determine the variety of factorizations for $K$ is the exact same as that which yield factorizations for $V$. Examples and applications are included: point-processes, sampling schemes, constructive discretization, graph-Laplacians, and boundary-value problems.
The main purpose of our paper is a new approach to design of algorithms of Kaczmarz type in the framework of operators in Hilbert space. Our applications include a diverse list of optimization problems, new Karhunen-Lo`eve transforms, and Principal C
The present paper presents two new approaches to Fourier series and spectral analysis of singular measures.
With view to applications in stochastic analysis and geometry, we introduce a new correspondence for positive definite kernels (p.d.) $K$ and their associated reproducing kernel Hilbert spaces. With this we establish two kinds of factorizations: (i)
We give explicit transforms for Hilbert spaces associated with positive definite functions on $mathbb{R}$, and positive definite tempered distributions, incl., generalizations to non-abelian locally compact groups. Applications to the theory of exten
Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every pos