ترغب بنشر مسار تعليمي؟ اضغط هنا

On reproducing kernels, and analysis of measures

215   0   0.0 ( 0 )
 نشر من قبل Feng Tian
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every positive definite kernel is also the covariance kernel of a Gaussian process. Given a fixed sigma-finite measure $mu$, we consider positive definite kernels defined on the subset of the sigma algebra having finite $mu$ measure. We show that then the corresponding Hilbert factorizations consist of signed measures, finitely additive, but not automatically sigma-additive. We give a necessary and sufficient condition for when the measures in the RKHS, and the Hilbert factorizations, are sigma-additive. Our emphasis is the case when $mu$ is assumed non-atomic. By contrast, when $mu$ is known to be atomic, our setting is shown to generalize that of Shannon-interpolation. Our RKHS-approach further leads to new insight into the associated Gaussian processes, their It^{o} calculus and diffusion. Examples include fractional Brownian motion, and time-change processes.



قيم البحث

اقرأ أيضاً

253 - Palle Jorgensen , Feng Tian 2018
We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to facto rization for p.d. kernels is intuitively motivated by matrix factorizations, but in infinite dimensions, subtle measure theoretic issues must be addressed. Consider a given p.d. kernel $K$, presented as a covariance kernel for a Gaussian process $V$. We then give an explicit duality for these two seemingly different notions of factorization, for p.d. kernel $K$, vs for Gaussian process $V$. Our result is in the form of an explicit correspondence. It states that the analytic data which determine the variety of factorizations for $K$ is the exact same as that which yield factorizations for $V$. Examples and applications are included: point-processes, sampling schemes, constructive discretization, graph-Laplacians, and boundary-value problems.
188 - Patrick Cattiaux 2019
If Poincar{e} inequality has been studied by Bobkov for radial measures, few is known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap here using different methods: Bobkovs argument and super-Poincar{e} inequalities , direct approach via L1-logarithmic Sobolev inequalities. We also give various examples where the obtained bounds are quite sharp. Recent bounds obtained by Lee-Vempala in the logconcave bounded case are refined for radial measures.
We use reproducing kernel methods to study various rigidity problems. The methods and setting allow us to also consider the non-positive case.
145 - Guangfu Cao , Li He 2021
For any real $beta$ let $H^2_beta$ be the Hardy-Sobolev space on the unit disk $D$. $H^2_beta$ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $beta>1/2$. In this paper, we study composition operators $C_varphi$ on $H ^2_beta$ for $1/2<beta<1$. Our main result is that, for a non-constant analytic function $varphi:DtoD$, the operator $C_{varphi }$ has dense range in $H_{beta }^{2}$ if and only if the polynomials are dense in a certain Dirichlet space of the domain $varphi(D)$. It follows that if the range of $C_{varphi }$ is dense in $H_{beta }^{2}$, then $varphi $ is a weak-star generator of $H^{infty}$. Note that this conclusion is false for the classical Dirichlet space $mathfrak{D}$. We also characterize Fredholm composition operators on $H^{2}_{beta }$.
171 - Sneh Lata , Vern I. Paulsen 2010
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can be partitioned into finitely many Riesz basic sequences, then a general bounded Bessel sequence in an arbitrary Hilbert space can be partitioned into finitely many Riesz basic sequences. In addition, we examine some of these spaces and prove that for these spaces bounded Bessel sequences of normalized kernel functions are finite unions of Riesz basic sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا