ﻻ يوجد ملخص باللغة العربية
Rayleigh--Taylor fluid turbulence through a bed of rigid, finite-size, spheres is investigated by means of high-resolution Direct Numerical Simulations (DNS), fully coupling the fluid and the solid phase via a state-of-the art Immersed Boundary Method (IBM). The porous character of the medium reveals a totally different physics for the mixing process when compared to the well-known phenomenology of classical RT mixing. For sufficiently small porosity, the growth-rate of the mixing layer is linear in time (instead of quadratical) and the velocity fluctuations tend to saturate to a constant value (instead of linearly growing). We propose an effective continuum model to fully explain these results where porosity originated by the finite-size spheres is parameterized by a friction coefficient.
Inertialess anisotropic particles in a Rayleigh-Benard turbulent flow show maximal tumbling rates for weakly oblate shapes, in contrast with the universal behaviour observed in developed turbulence where the mean tumbling rate monotonically decreases
We develop a framework for analyzing the momentum balance of laminar particle-laden flows based on immersed boundary methods, which solve the Navier-Stokes equations and resolve the particle surfaces. This framework differs from previous studies by e
Rayleigh-Taylor-instability(RTI) induced flow and mixing are of great importance in both nature and engineering scenarios. To capture the underpinning physics, tracers are introduced to make a supplement to discrete Boltzmann simulation of RTI in com
We study periodically driven Taylor-Couette turbulence, i.e. the flow confined between two concentric, independently rotating cylinders. Here, the inner cylinder is driven sinusoidally while the outer cylinder is kept at rest (time-averaged Reynolds
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s