ﻻ يوجد ملخص باللغة العربية
We develop a framework for analyzing the momentum balance of laminar particle-laden flows based on immersed boundary methods, which solve the Navier-Stokes equations and resolve the particle surfaces. This framework differs from previous studies by explicitly accounting for the fluid inside the particles, which is a by-product of the immersed boundary method, allowing us to close the momentum balance for the flow around a single rolling sphere. We then compute a momentum balance of a laminar Poiseuille flow over a dense bed of particles, finding that the stresses remain in equilibrium even during unsteady flow conditions. While previous studies have focused on stresses for the streamwise momentum balance, the present approach also allows us to evaluate stress balances in the vertical direction, which are necessary to understand the role that collisions and hydrodynamic drag play during dilation and contraction of particle beds. While our analysis accounts for the fluid and particle phases separately, we attempt to establish a momentum balance for the fluid/particle mixture, but find that it does not completely close locally due to collision stresses not being resolved across the particle diameter. However, we find a correlation between the local shear rate and the gap in the mixture balance, which can potentially be used to close the balance for the mixture.
Rayleigh--Taylor fluid turbulence through a bed of rigid, finite-size, spheres is investigated by means of high-resolution Direct Numerical Simulations (DNS), fully coupling the fluid and the solid phase via a state-of-the art Immersed Boundary Metho
Unsteady laminar vortex shedding over a circular cylinder is predicted using a deep learning technique, a generative adversarial network (GAN), with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equa
The impact of wall roughness on fully developed laminar pipe flow is investigated numerically. The roughness is comprised of square bars of varying size and pitch. Results show that the inverse relation between the friction factor and the Reynolds nu
The mechanism of hydrodynamics-induced pairing of soft particles, namely closed bilayer membranes (vesicles, a model system for red blood cells) and drops, is studied numerically with a special attention paid to the role of the confinement (the parti
We study theoretically and experimentally how a thin layer of liquid flows along a flexible beam. The flow is modelled using lubrication theory and the substrate is modelled as an elastica which deforms according to the Euler-Bernoulli equation. A co