ﻻ يوجد ملخص باللغة العربية
Rayleigh-Taylor-instability(RTI) induced flow and mixing are of great importance in both nature and engineering scenarios. To capture the underpinning physics, tracers are introduced to make a supplement to discrete Boltzmann simulation of RTI in compressible flows. Via marking two types of tracers with different colors, the tracer distribution provides a clear boundary of two fluids during the RTI evolution. Fine structures of the flow and thermodynamic nonequilibrium behavior around the interface in a miscible two-fluid system are delineated. Distribution of tracers in its velocity phase space makes a charming pattern showing quite dense information on the flow behavior, which opens a new perspective for analyzing and accessing significantly deep insights into the flow system. RTI mixing is further investigated via tracer defined local mixedness. The appearance of Kelvin-Helmholtz instability is quantitatively captured by mixedness averaged align the direction of the pressure gradient. The role of compressibility and viscosity on mixing are investigated separately, both of which show two-stage effect. The underlying mechanism of the two-stage effect is interpreted as the development of large structures at the initial stage and the generation of small structures at the late stage. At the late stage, for a fixed time, a saturation phenomenon of viscosity is found that further increase of viscosity cannot see an evident decline in mixedness. The mixing statues of heavy and light fluids are not synchronous and the mixing of a RTI system is heterogenous. The results are helpful for understanding the mechanism of flow and mixing induced by RTI.
In this paper, the coupled Rayleigh-Taylor-Kelvin-Helmholtz instability(RTI, KHI and RTKHI, respectively) system is investigated using a multiple-relaxation-time discrete Boltzmann model. Both the morphological boundary length and thermodynamic noneq
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless paramet
Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Raylei
Rayleigh--Taylor fluid turbulence through a bed of rigid, finite-size, spheres is investigated by means of high-resolution Direct Numerical Simulations (DNS), fully coupling the fluid and the solid phase via a state-of-the art Immersed Boundary Metho
Rayleigh-Taylor (RT) instability widely exists in nature and engineering fields. How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value. At present, abundant results of RT instabilit