ﻻ يوجد ملخص باللغة العربية
We present a new method for design problems wherein the goal is to maximize or specify the value of one or more properties of interest. For example, in protein design, one may wish to find the protein sequence that maximizes fluorescence. We assume access to one or more, potentially black box, stochastic oracle predictive functions, each of which maps from input (e.g., protein sequences) design space to a distribution over a property of interest (e.g. protein fluorescence). At first glance, this problem can be framed as one of optimizing the oracle(s) with respect to the input. However, many state-of-the-art predictive models, such as neural networks, are known to suffer from pathologies, especially for data far from the training distribution. Thus we need to modulate the optimization of the oracle inputs with prior knowledge about what makes `realistic inputs (e.g., proteins that stably fold). Herein, we propose a new method to solve this problem, Conditioning by Adaptive Sampling, which yields state-of-the-art results on a protein fluorescence problem, as compared to other recently published approaches. Formally, our method achieves its success by using model-based adaptive sampling to estimate the conditional distribution of the input sequences given the desired properties.
We present a probabilistic modeling framework and adaptive sampling algorithm wherein unsupervised generative models are combined with black box predictive models to tackle the problem of input design. In input design, one is given one or more stocha
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which
Neural Machine Translation (NMT) models often lack diversity in their generated translations, even when paired with search algorithm, like beam search. A challenge is that the diversity in translations are caused by the variability in the target lang
Program synthesis has emerged as a successful approach to the image parsing task. Most prior works rely on a two-step scheme involving supervised pretraining of a Seq2Seq model with synthetic programs followed by reinforcement learning (RL) for fine-
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement, which reduces variance as it avoids duplicate samples. We show that our estimator can be derived as the Rao-Blackwellization of thr