ترغب بنشر مسار تعليمي؟ اضغط هنا

B-spline-like bases for $C^2$ cubics on the Powell-Sabin 12-split

142   0   0.0 ( 0 )
 نشر من قبل Georg Muntingh PhD
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a Bezier-like manner. In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for $C^0$-, $C^1$-, and $C^2$-smoothness are derived.



قيم البحث

اقرأ أيضاً

We introduce the new class of planar Pythagorean-Hodograph (PH) B-Spline curves. They can be seen as a generalization of the well-known class of planar Pythagorean-Hodograph (PH) Bezier curves, presented by R. Farouki and T. Sakkalis in 1990, includi ng the latter ones as special cases. Pythagorean-Hodograph B-Spline curves are non-uniform parametric B-Spline curves whose arc-length is a B-Spline function as well. An important consequence of this special property is that the offsets of Pythagorean-Hodograph B-Spline curves are non-uniform rational B-Spline (NURBS) curves. Thus, although Pythagorean-Hodograph B-Spline curves have fewer degrees of freedom than general B-Spline curves of the same degree, they offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. After providing a general definition for this new class of planar parametric curves, we present useful formulae for their construction, discuss their remarkable attractive properties and give some examples of their practical use.
106 - X. G. Zhu , Y. F. Nie , Z. B. Yuan 2016
In this article, we propose an exponential B-spline collocation method to approximate the solution of the fractional sub-diffusion equation of Caputo type. The present method is generated by use of the Gorenflo-Mainardi-Moretti-Paradisi (GMMP) scheme in time and an efficient exponential B-spline based method in space. The unique solvability is rigorously discussed. Its stability is well illustrated via a procedure closely resembling the classic von Neumann approach. The resulting algebraic system is tri-diagonal that can rapidly be solved by the known algebraic solver with low cost and storage. A series of numerical examples are finally carried out and by contrast to the other algorithms available in the literature, numerical results confirm the validity and superiority of our method.
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B -splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bezier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
185 - Wei Zhu , Ingrid Daubechies 2019
We provide a detailed analysis of the obstruction (studied first by S. Durand and later by R. Yin and one of us) in the construction of multidirectional wavelet orthonormal bases corresponding to any admissible frequency partition in the framework of subband filtering with non-uniform subsampling. To contextualize our analysis, we build, in particular, multidirectional alias-free hexagonal wavelet bases and low-redundancy frames with optimal spatial decay. In addition, we show that a 2D cutting lemma can be used to subdivide the obtained wavelet systems in higher frequency rings so as to generate bases or frames that satisfy the ``parabolic scaling law enjoyed by curvelets and shearlets. Numerical experiments on high bit-rate image compression are conducted to illustrate the potential of the proposed systems.
We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instea d, we compute a high order accurate guiding field using a continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral element method to solve a Laplace equation for each of the field variables using the open source code Nektar++. The spectral method provides spectral convergence and sub-element resolution of the fields. The DG approximation allows meshing of corners that are not multiples of $pi/2$ in a discretization consistent manner, when needed. The high order field can then be exploited to accurately find irregular nodes, and can be accurately integrated using a high order separatrix integration method to avoid features like limit cycles. The result is a mesh with naturally curved quadrilateral elements that do not need to be curved a posteriori to eliminate invalid elements. The mesh generation procedure is implemented in the open source mesh generation program NekMesh.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا