ﻻ يوجد ملخص باللغة العربية
We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instead, we compute a high order accurate guiding field using a continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral element method to solve a Laplace equation for each of the field variables using the open source code Nektar++. The spectral method provides spectral convergence and sub-element resolution of the fields. The DG approximation allows meshing of corners that are not multiples of $pi/2$ in a discretization consistent manner, when needed. The high order field can then be exploited to accurately find irregular nodes, and can be accurately integrated using a high order separatrix integration method to avoid features like limit cycles. The result is a mesh with naturally curved quadrilateral elements that do not need to be curved a posteriori to eliminate invalid elements. The mesh generation procedure is implemented in the open source mesh generation program NekMesh.
We describe an adaptive version of a method for generating valid naturally curved quadrilateral meshes. The method uses a guiding field, derived from the concept of a cross field, to create block decompositions of multiply connected two dimensional d
Constructing fast numerical solvers for partial differential equations (PDEs) is crucial for many scientific disciplines. A leading technique for solving large-scale PDEs is using multigrid methods. At the core of a multigrid solver is the prolongati
We present a method for the automatic assembly of apictorial jigsaw puzzles. This method relies on integral area invariants for shape matching and an optimization process to aggregate shape matches into a final puzzle assembly. Assumptions about indi
This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic. Each quad-mesh induces a conformal structure of the surface, and a meromorphic differential, where the configuration of singular vertices correspond to
Despite decades of research in this area, mesh adaptation capabilities are still rarely found in numerical simulation software. We postulate that the primary reason for this is lack of usability. Integrating mesh adaptation into existing software is