ترغب بنشر مسار تعليمي؟ اضغط هنا

Pythagorean-Hodograph B-Spline Curves

130   0   0.0 ( 0 )
 نشر من قبل Carolina Beccari
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the new class of planar Pythagorean-Hodograph (PH) B-Spline curves. They can be seen as a generalization of the well-known class of planar Pythagorean-Hodograph (PH) Bezier curves, presented by R. Farouki and T. Sakkalis in 1990, including the latter ones as special cases. Pythagorean-Hodograph B-Spline curves are non-uniform parametric B-Spline curves whose arc-length is a B-Spline function as well. An important consequence of this special property is that the offsets of Pythagorean-Hodograph B-Spline curves are non-uniform rational B-Spline (NURBS) curves. Thus, although Pythagorean-Hodograph B-Spline curves have fewer degrees of freedom than general B-Spline curves of the same degree, they offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. After providing a general definition for this new class of planar parametric curves, we present useful formulae for their construction, discuss their remarkable attractive properties and give some examples of their practical use.



قيم البحث

اقرأ أيضاً

106 - X. G. Zhu , Y. F. Nie , Z. B. Yuan 2016
In this article, we propose an exponential B-spline collocation method to approximate the solution of the fractional sub-diffusion equation of Caputo type. The present method is generated by use of the Gorenflo-Mainardi-Moretti-Paradisi (GMMP) scheme in time and an efficient exponential B-spline based method in space. The unique solvability is rigorously discussed. Its stability is well illustrated via a procedure closely resembling the classic von Neumann approach. The resulting algebraic system is tri-diagonal that can rapidly be solved by the known algebraic solver with low cost and storage. A series of numerical examples are finally carried out and by contrast to the other algorithms available in the literature, numerical results confirm the validity and superiority of our method.
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B -splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bezier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using seventh degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value pr oblem. We obtain Septic B-Spline formulation and the Collocation B-spline Method is formulated as an approximation solution. We apply the presented method to solve an example of seventh-order boundary value problem which the results show that there is an agreement between approximate solutions and exact solutions. Resulting low absolute errors show that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.
203 - K. Kopotun , D. Leviatan , 2014
Several results on constrained spline smoothing are obtained. In particular, we establish a general result, showing how one can constructively smooth any monotone or convex piecewise polynomial function (ppf) (or any $q$-monotone ppf, $qgeq 3$, with one additional degree of smoothness) to be of minimal defect while keeping it close to the original function in the ${mathbb L}_p$-(quasi)norm. It is well known that approximating a function by ppfs of minimal defect (splines) avoids introduction of artifacts which may be unrelated to the original function, thus it is always preferable. On the other hand, it is usually easier to construct constrained ppfs with as little requirements on smoothness as possible. Our results allow to obtain shape-preserving splines of minimal defect with equidistant or Chebyshev knots. The validity of the corresponding Jackson-type estimates for shape-preserving spline approximation is summarized, in particular we show, that the ${mathbb L}_p$-estimates, $pge1$, can be immediately derived from the ${mathbb L}_infty$-estimates.
141 - Tom Lyche , Georg Muntingh 2019
For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a Bezier-like manner. In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for $C^0$-, $C^1$-, and $C^2$-smoothness are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا