ﻻ يوجد ملخص باللغة العربية
We introduce the new class of planar Pythagorean-Hodograph (PH) B-Spline curves. They can be seen as a generalization of the well-known class of planar Pythagorean-Hodograph (PH) Bezier curves, presented by R. Farouki and T. Sakkalis in 1990, including the latter ones as special cases. Pythagorean-Hodograph B-Spline curves are non-uniform parametric B-Spline curves whose arc-length is a B-Spline function as well. An important consequence of this special property is that the offsets of Pythagorean-Hodograph B-Spline curves are non-uniform rational B-Spline (NURBS) curves. Thus, although Pythagorean-Hodograph B-Spline curves have fewer degrees of freedom than general B-Spline curves of the same degree, they offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. After providing a general definition for this new class of planar parametric curves, we present useful formulae for their construction, discuss their remarkable attractive properties and give some examples of their practical use.
In this article, we propose an exponential B-spline collocation method to approximate the solution of the fractional sub-diffusion equation of Caputo type. The present method is generated by use of the Gorenflo-Mainardi-Moretti-Paradisi (GMMP) scheme
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using seventh degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value pr
Several results on constrained spline smoothing are obtained. In particular, we establish a general result, showing how one can constructively smooth any monotone or convex piecewise polynomial function (ppf) (or any $q$-monotone ppf, $qgeq 3$, with
For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a