ﻻ يوجد ملخص باللغة العربية
In this paper we report the development of a new method for the evaluation of thin films mass thickness and composition based on the Energy Dispersive X-Ray Spectroscopy (EDS). The method exploits the theoretical calculation of the in-depth characteristic X-ray generation distribution function, $phi$/($rho$ z), in multilayer samples, obtained by the numerical solution of the electron transport equation, to achieve reliable measurements without the need of a reference sample and multiple voltages acquisitions. The electron transport model is derived from the Boltzmann transport equation and it exploits the most updated and reliable physical parameters in order to obtain an accurate description of the phenomenon. The method for the calculation of film mass thickness and composition is validated with benchmarks from standard techniques. In addition, a model uncertainty and sensitivity analysis is carried out and it indicates that the mass thickness accuracy is in the order of 10 $mu$g/cm$^2$, which is comparable to the nuclear standard techniques resolution. We show the technique peculiarities in one example measurement: two-dimensional mass thickness and composition profiles are obtained for a ultra-low density, high roughness, nanostructured film.
Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, an
Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth
Transition metal oxides have long been an area of interest for water electrocatalysis through the oxygen evolution and oxygen reduction reactions. Iron oxides, such as LaFeO$_{3}$, are particularly promising due to the favorable energy alignment of t
We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5,nm due to a weaker thickness dependence of the resis
With high quality topological insulator (TI) Bi2Se3 thin films, we report thickness-independent transport properties over wide thickness ranges. Conductance remained nominally constant as the sample thickness changed from 256 to ~8 QL (QL: quintuple