ترغب بنشر مسار تعليمي؟ اضغط هنا

Thickness dependence of the resistivity of Platinum group metal thin films

123   0   0.0 ( 0 )
 نشر من قبل Christoph Adelmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5,nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas--Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas--Shatzkes model in consideration of the experimental findings.



قيم البحث

اقرأ أيضاً

Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth free composition. One of its applications is its association with a piezoelectric material to form a extrinsic multiferroic composite as an alternative to the rare room temperature intrinsic multiferroics such as BiFeO$_3$. This study focuses on thin Fe$_{0.81}$Ga$_{0.19}$ films of thickness 5, 10, 20 and 60 nm deposited by sputtering onto glass substrates. Magnetization reversal study reveals a well-defined symmetry with two principal directions independent of the thickness. The magnetic signature of this magnetic anisotropy decreases with increasing FeGa thickness due to an increase of the non-preferential polycrystalline arrangement, as revealed by transmission electron microscopy (TEM) observations. Thus when magnetic field is applied along these specific directions, magnetization reversal is mainly coherent for the thinnest sample as seen from the transverse magnetization cycles. Magnetostriction coefficient reaches 20 ppm for the 5 nm film and decreases for thicker samples, where polycrystalline part with non-preferential orientation prevails.
Spin transfer torque (STT) driven by a charge current plays a key role in magnetization switching in heavy-metal/ferromagnetic-metal structures. The STT efficiency defined by the ratio between the effective field due to STT and the current density, i s required to be improved to reduce energy compulsions in the STT-based spintronic devices. In this work, using the harmonic Hall measurement method, we experimentally studied the STT efficiency in platinum(Pt)/FM structures as a function of the Pt thickness. We found that the STT efficiency strongly depends on the Pt thickness and reaches a maximum value of 4.259 mT/($10^6$A/$cm^{2}$) for the 1.8-nm-thickness Pt sample. This result indicates that competition between spin Hall effect (SHE) and Rashba effect as well as spin diffusion process across the Pt layer determines the Pt thickness for the maximum STT efficiency. We demonstrated the role played by the spin diffusion besides the spin current generation mechanisms in improvement of the STT efficiency, which is helpful in designing STT-based devices.
Topological magnetic semimetals promise large Berry curvature through the distribution of the topological Weyl nodes or nodal lines and further novel physics with exotic transport phenomena. We present a systematic study of the structural and magneto transport properties of Co$_2$MnGa films from thin (20 nm) to bulk like behavior (80 nm), in order to understand the underlying mechanisms and the role on the topology. The magnetron sputtered Co$_2$MnGa films are $L$$2_{mathrm {1}}$-ordered showing very good heteroepitaxy and a strain-induced tetragonal distortion. The anomalous Hall conductivity was found to be maximum at a value of 1138 S/cm, with a corresponding anomalous Hall angle of 13 %, which is comparatively larger than topologically trivial metals. There is a good agreement between the theoretical calculations and the Hall conductivity observed for the 80 nm film, which suggest that the effect is intrinsic. Thus, the Co$_2$MnGa compound manifests as a promising material towards topologically-driven spintronic applications.
155 - L. Palova , P. Chandra , K.M. Rabe 2007
We present a segregrated strain model that describes the thickness-dependent dielectric properties of ferroelectric films. Using a phenomenological Landau approach, we present results for two specific materials, making comparison with experiment and with first-principles calculations whenever possible. We also suggest a smoking gun benchtop probe to test our elastic scenario.
Transition metal oxides have long been an area of interest for water electrocatalysis through the oxygen evolution and oxygen reduction reactions. Iron oxides, such as LaFeO$_{3}$, are particularly promising due to the favorable energy alignment of t he valence and conduction bands comprised of Fe$^{3+}$ cations and the visible light band gap of such materials. In this work, we examine the role of band alignment on the electrocatalytic oxygen evolution reaction (OER) in the intrinsic semiconductor LaFeO$_{3}$ by growing epitaxial films of varying thicknesses on Nb-doped SrTiO$_{3}$. Using cyclic voltammetry and electrochemical impedance spectroscopy, we find that there is a strong thickness dependence on the efficiency of electrocatalysis for OER. These measurements are understood based on interfacial band alignment in the system as confirmed by layer-resolved electron energy loss spectroscopy and electrochemical Mott-Schottky measurements. Our results demonstrate the importance of band engineering for the rational design of thin film electrocatalysts for renewable energy sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا