ﻻ يوجد ملخص باللغة العربية
With high quality topological insulator (TI) Bi2Se3 thin films, we report thickness-independent transport properties over wide thickness ranges. Conductance remained nominally constant as the sample thickness changed from 256 to ~8 QL (QL: quintuple layer, 1 QL = ~1 nm). Two surface channels of very different behaviors were identified. The sheet carrier density of one channel remained constant at ~3.0 x 10^13 cm^-2 down to 2 QL, while the other, which exhibited quantum oscillations, remained constant at ~8 x 10^12 cm^-2 only down to ~8 QL. The weak antilocalization parameters also exhibited similar thickness-independence. These two channels are most consistent with the topological surface states and the surface accumulation layers, respectively.
In ideal topological insulator (TI) films the bulk state, which is supposed to be insulating, should not provide any electric coupling between the two metallic surfaces. However, transport studies on existing TI films show that the topological states
Thin films of topological insulators (TI) usually exhibit multiple parallel conduction channels for the transport of electrical current. Beside the topologically protected surface states (TSS), parallel channels may exist, namely the interior of the
We show that a number of transport properties in topological insulator (TI) Bi2Se3 exhibit striking thickness-dependences over a range of up to five orders of thickness (3 nm - 170 mu m). Volume carrier density decreased with thickness, presumably du
Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains ch
The microstructure of Bi2Se3 topological-insulator thin films grown by molecular beam epitaxy on InP(111)A and InP(111)B substrates that have different surface roughnesses has been studied in detail using X-ray diffraction, X-ray reflectivity, atomic