ﻻ يوجد ملخص باللغة العربية
The origin of the reservoirs of water on Earth is debated. The Earths crust may contain at least three times more water than the oceans. This crust water is found in the form of phyllosilicates, whose origin probably differs from that of the oceans. We test the possibility to form phyllosilicates in protoplanetary disks, which can be the building blocks of terrestrial planets. We developed an exploratory rate-based warm surface chemistry model where water from the gas-phase can chemisorb on dust grain surfaces and subsequently diffuse into the silicate cores. We apply the phyllosilicate formation model to a zero-dimensional chemical model and to a 2D protoplanetary disk model (ProDiMo). The disk model includes in addition to the cold and warm surface chemistry continuum and line radiative transfer, photoprocesses (photodissociation, photoionization, and photodesorption), gas-phase cold and warm chemistry including three-body reactions, and detailed thermal balance. Despite the high energy barrier for water chemisorption on silicate grain surfaces and for diffusion into the core, the chemisorption sites at the surfaces can be occupied by a hydroxyl bond (-OH) at all gas and dust temperatures from 80 to 700 K for a gas density of 2E4 cm^-3. The chemisorption sites in the silicate cores are occupied at temperatures between 250 and 700 K. At higher temperatures thermal desorption of chemisorbed water occurs. The occupation efficiency is only limited by the maximum water uptake of the silicate. The timescales for complete hydration are at most 1E5 years for 1 mm radius grains at a gas density of 1E8 cm^-3. Phyllosilicates can be formed on dust grains at the dust coagulation stage in protoplanetary disks within 1 Myr. It is however not clear whether the amount of phyllosilicate formed by warm surface chemistry is sufficient compared to that found in Solar System objects.
Molecular hydrogen (H2) is the main constituent of the gas in the planet-forming disks that surround many PMS stars. H2 can be incorporated in the atmosphere of the giant planets. HD has been detected in a few disks and can be considered the most rel
We study the effects of grain surface reactions on the chemistry of protoplanetary disks where gas, ice surface layers and icy mantles of dust grains are considered as three distinct phases. Gas phase and grain surface chemistry is found to be mainly
High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradi
Planet formation is thought to begin with the growth of dust particles in protoplanetary disks from micrometer to millimeter and centimeter sizes. Dust growth is hindered by a number of growth barriers, according to dust evolution theory, while obser
We have investigated molecular distributions in protoplanetary disks, adopting a disk model with a temperature gradient in the vertical direction. The model produces sufficiently high abundances of gaseous CO and HCO+ to account for line observations