ﻻ يوجد ملخص باللغة العربية
We have investigated molecular distributions in protoplanetary disks, adopting a disk model with a temperature gradient in the vertical direction. The model produces sufficiently high abundances of gaseous CO and HCO+ to account for line observations of T Tauri stars using a sticking probability of unity and without assuming any non-thermal desorption. In regions of radius R > 10 AU, with which we are concerned, the temperature increases with increasing height from the midplane. In a warm intermediate layer, there are significant amounts of gaseous molecules owing to thermal desorption and efficient shielding of ultraviolet radiation by the flared disk. The column densities of HCN, CN, CS, H2CO, HNC and HCO+ obtained from our model are in good agreement with the observations of DM Tau, but are smaller than those of LkCa15. Molecular line profiles from our disk models are calculated using a 2-dimensional non-local-thermal-equilibrium (NLTE) molecular-line radiative transfer code for a direct comparison with observations. Deuterated species are included in our chemical model. The molecular D/H ratios in the model are in reasonable agreement with those observed in protoplanetary disks.
CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks revea
The origin of the reservoirs of water on Earth is debated. The Earths crust may contain at least three times more water than the oceans. This crust water is found in the form of phyllosilicates, whose origin probably differs from that of the oceans.
Large scale vortices could play a key role in the evolution of protoplanetary disks, particularly in the dead-zone where no turbulence associated with magnetic field is expected. Their possible formation by the subcritical baroclinic instability is a
Circumstellar disks are exposed to intense ultraviolet radiation from the young star. In the inner disks, the UV radiation can be enhanced by more than seven orders of magnitude compared with the average interstellar field, resulting in a physical an
Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constitue