ﻻ يوجد ملخص باللغة العربية
We study the effects of grain surface reactions on the chemistry of protoplanetary disks where gas, ice surface layers and icy mantles of dust grains are considered as three distinct phases. Gas phase and grain surface chemistry is found to be mainly driven by photo-reactions and dust temperature gradients. The icy disk interior has three distinct chemical regions: (i) the inner midplane with low FUV fluxes and warm dust ($gtrsim 15$K) that lead to the formation of complex organic molecules, (ii) the outer midplane with higher FUV from the ISM and cold dust where hydrogenation reactions dominate and, (iii) a molecular layer above the midplane but below the water condensation front where photodissociation of ices affects gas phase compositions. Some common radicals, e.g., CN and C$_2$H, exhibit a two-layered vertical structure and are abundant near the CO photodissociation front and near the water condensation front. The 3-phase approximation in general leads to lower vertical column densities than 2-phase models for many gas-phase molecules due to reduced desorption, e.g., H$_2$O, CO$_2$, HCN and HCOOH decrease by $sim$ two orders of magnitude. Finally, we find that many observed gas phase species originate near the water condensation front; photo-processes determine their column densities which do not vary significantly with key disk properties such as mass and dust/gas ratio.
We compute the desorption rate of icy mantles on dust grains as a function of the size and composition of both the grain and the mantle. We combine existing models of cosmic ray (CR) related desorption phenomena with a model of CR transport to accura
Advanced telescopes, such as ALMA and JWST, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essen
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk dust lines which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption
We present Submillimeter Array observations of H2CO and N2H+ emission in the disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296 at 2-6 resolution and discuss the distribution of these species with respect to CO freeze-out. The H2CO
The origin of the reservoirs of water on Earth is debated. The Earths crust may contain at least three times more water than the oceans. This crust water is found in the form of phyllosilicates, whose origin probably differs from that of the oceans.