ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational paper wrapping transforms non-stretchable 2D devices into wearable and conformable 3D devices

68   0   0.0 ( 0 )
 نشر من قبل Yu-Ki Lee
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

This study starts from the counter-intuitive question of how we can render a conventional stiff, non-stretchable and even brittle material conformable so that it can fully wrap around a curved surface, such as a sphere, without failure. Here, we answer this conundrum by extending geometrical design in computational kirigami (paper cutting and folding) to paper wrapping. Our computational paper wrapping-based approach provides the more robust and reliable fabrication of conformal devices than paper folding approaches. This in turn leads to a significant increase in the applicability of computational kirigami to real-world fabrication. This new computer-aided design transforms 2D-based conventional materials, such as Si and copper, into a variety of targeted conformal structures that can fully wrap the desired 3D structure without plastic deformation or fracture. We further demonstrated that our novel approach enables a pluripotent design platform to transform conventional non-stretchable 2D-based devices, such as electroluminescent lighting and a paper battery, into wearable and conformable 3D curved devices.



قيم البحث

اقرأ أيضاً

With wearable devices such as smartwatches on the rise in the consumer electronics market, securing these wearables is vital. However, the current security mechanisms only focus on validating the user not the device itself. Indeed, wearables can be ( 1) unauthorized wearable devices with correct credentials accessing valuable systems and networks, (2) passive insiders or outsider wearable devices, or (3) information-leaking wearables devices. Fingerprinting via machine learning can provide necessary cyber threat intelligence to address all these cyber attacks. In this work, we introduce a wearable fingerprinting technique focusing on Bluetooth classic protocol, which is a common protocol used by the wearables and other IoT devices. Specifically, we propose a non-intrusive wearable device identification framework which utilizes 20 different Machine Learning (ML) algorithms in the training phase of the classification process and selects the best performing algorithm for the testing phase. Furthermore, we evaluate the performance of proposed wearable fingerprinting technique on real wearable devices, including various off-the-shelf smartwatches. Our evaluation demonstrates the feasibility of the proposed technique to provide reliable cyber threat intelligence. Specifically, our detailed accuracy results show on average 98.5%, 98.3% precision and recall for identifying wearables using the Bluetooth classic protocol.
The majority of available wearable devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, wearable devices are mostly equipped with WiFi network inte rfaces, enabling direct communication with the Internet. Secure communication protocols should then run on these wearables itself, yet it is not clear if they can be efficiently supported. In this paper, we show that wearable devices are ready for direct and secure Internet communication by means of experiments with both controlled and Internet servers. We observe that the overall energy consumption and communication delay can be reduced with direct Internet connection via WiFi from wearables compared to using smartphones as relays via Bluetooth. We also show that the additional HTTPS cost caused by TLS handshake and encryption is closely related to number of parallel connections, and has the same relative impact on wearables and smartphones.
Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vit al in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions towards smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g. memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices.
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classificati on approaches (Support Vector Machines, Random Forest, Extra Trees, AdaBoost) and different pre/post-processing techniques to maximize sensitivity while guaranteeing no false alarms. We analyze global and subject-specific approaches, considering all 23-electrodes or only 4 temporal channels. For 8s window size and subject-specific approach, we report zero false positives and 100% sensitivity. These algorithms are parallelized and optimized for a parallel ultra-low power (PULP) platform, enabling 300h of continuous monitoring on a 300 mAh battery, in a wearable form factor and power budget. These results pave the way for the implementation of affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patient and caregiver requirements.
The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility t o study and improve this interaction. In addition, optimal control can also be used to generate predictive simulations that generate novel movements for the human model under varying optimization criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا