ﻻ يوجد ملخص باللغة العربية
With wearable devices such as smartwatches on the rise in the consumer electronics market, securing these wearables is vital. However, the current security mechanisms only focus on validating the user not the device itself. Indeed, wearables can be (1) unauthorized wearable devices with correct credentials accessing valuable systems and networks, (2) passive insiders or outsider wearable devices, or (3) information-leaking wearables devices. Fingerprinting via machine learning can provide necessary cyber threat intelligence to address all these cyber attacks. In this work, we introduce a wearable fingerprinting technique focusing on Bluetooth classic protocol, which is a common protocol used by the wearables and other IoT devices. Specifically, we propose a non-intrusive wearable device identification framework which utilizes 20 different Machine Learning (ML) algorithms in the training phase of the classification process and selects the best performing algorithm for the testing phase. Furthermore, we evaluate the performance of proposed wearable fingerprinting technique on real wearable devices, including various off-the-shelf smartwatches. Our evaluation demonstrates the feasibility of the proposed technique to provide reliable cyber threat intelligence. Specifically, our detailed accuracy results show on average 98.5%, 98.3% precision and recall for identifying wearables using the Bluetooth classic protocol.
The majority of available wearable devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, wearable devices are mostly equipped with WiFi network inte
Implantable and wearable medical devices (IWMDs) are widely used for the monitoring and therapy of an increasing range of medical conditions. Improvements in medical devices, enabled by advances in low-power processors, more complex firmware, and wir
The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility t
The Internet of Things (IoT) is becoming an indispensable part of everyday life, enabling a variety of emerging services and applications. However, the presence of rogue IoT devices has exposed the IoT to untold risks with severe consequences. The fi
Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vit