ﻻ يوجد ملخص باللغة العربية
The majority of available wearable devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, wearable devices are mostly equipped with WiFi network interfaces, enabling direct communication with the Internet. Secure communication protocols should then run on these wearables itself, yet it is not clear if they can be efficiently supported. In this paper, we show that wearable devices are ready for direct and secure Internet communication by means of experiments with both controlled and Internet servers. We observe that the overall energy consumption and communication delay can be reduced with direct Internet connection via WiFi from wearables compared to using smartphones as relays via Bluetooth. We also show that the additional HTTPS cost caused by TLS handshake and encryption is closely related to number of parallel connections, and has the same relative impact on wearables and smartphones.
With wearable devices such as smartwatches on the rise in the consumer electronics market, securing these wearables is vital. However, the current security mechanisms only focus on validating the user not the device itself. Indeed, wearables can be (
Implantable and wearable medical devices (IWMDs) are widely used for the monitoring and therapy of an increasing range of medical conditions. Improvements in medical devices, enabled by advances in low-power processors, more complex firmware, and wir
Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vit
This study starts from the counter-intuitive question of how we can render a conventional stiff, non-stretchable and even brittle material conformable so that it can fully wrap around a curved surface, such as a sphere, without failure. Here, we answ
The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility t