ﻻ يوجد ملخص باللغة العربية
The theory of probability shows that, as the fraction $X_n/Yto 0$, the conditional probability for $X_n$, given $X_n+Y in h_{delta}:=[h, h+delta]$, has a limit law $f_{X_n}(x)e^{-psi_n(h_delta)x}$, where $psi_n(h_delta) $ equals to $[partial ln P(Y in y_delta)/partial y]_{y=h}$ plus an additional term, contributed from the correlation between $X_n$ and bath $Y$. By applying this limit law to an isolated composite system consisting of two strongly coupled parts, a system of interest and a large but finite bath, we derive the generalized Boltzmann distribution law for the system of interest in the exponential form of a redefined Hamiltonian and corrected Boltzmann temperature that reflects the modification due to strong system-bath coupling and the large but finite bath.
We propose a new concept for the dynamics of a quantum bath, the Chebyshev space, and a new method based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that exactly represents the fermionic or bosonic bat
In this paper we study a model of randomly colliding particles interacting with a thermal bath. Collisions between particles are modeled via the Kac master equation while the thermostat is seen as an infinite gas at thermal equilibrium at inverse tem
We develop a Magnus formalism for periodically driven systems which provides an expansion both in the driving term and the inverse driving frequency, applicable to isolated and dissipative systems. We derive explicit formulas for a driving term with
We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterer
The quantitative information on the spectral gaps for the linearized Boltzmann operator is of primary importance on justifying the Boltzmann model and study of relaxation to equilibrium. This work, for the first time, provides numerical evidences on