ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kac Model Coupled to a Thermostat

175   0   0.0 ( 0 )
 نشر من قبل Ranjini Vaidyanathan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study a model of randomly colliding particles interacting with a thermal bath. Collisions between particles are modeled via the Kac master equation while the thermostat is seen as an infinite gas at thermal equilibrium at inverse temperature $beta$. The system admits the canonical distribution at inverse temperature $beta$ as the unique equilibrium state. We prove that any initial distribution approaches the equilibrium distribution exponentially fast both by computing the gap of the generator of the evolution, in a proper function space, as well as by proving exponential decay in relative entropy. We also show that the evolution propagates chaos and that the one-particle marginal, in the large-system limit, satisfies an effective Boltzmann-type equation.



قيم البحث

اقرأ أيضاً

We study a system of $N$ particles interacting through the Kac collision, with $m$ of them interacting, in addition, with a Maxwellian thermostat at temperature $frac{1}{beta}$. We use two indicators to understand the approach to the equilibrium Gaus sian state. We prove that i) the spectral gap of the evolution operator behaves as $frac{m}{N}$ for large $N$ ii) the relative entropy approaches its equilibrium value (at least) at an eventually exponential rate $sim frac{m}{N^2}$ for large $N$. The question of having non-zero entropy production at time $0$ remains open. A relationship between the Maxwellian thermostat and the thermostat used in Bonetto, Loss, Vaidyanathan (J. Stat. Phys. 156(4):647-667, 2014) is established through a van Hove limit.
The theory of probability shows that, as the fraction $X_n/Yto 0$, the conditional probability for $X_n$, given $X_n+Y in h_{delta}:=[h, h+delta]$, has a limit law $f_{X_n}(x)e^{-psi_n(h_delta)x}$, where $psi_n(h_delta) $ equals to $[partial ln P(Y i n y_delta)/partial y]_{y=h}$ plus an additional term, contributed from the correlation between $X_n$ and bath $Y$. By applying this limit law to an isolated composite system consisting of two strongly coupled parts, a system of interest and a large but finite bath, we derive the generalized Boltzmann distribution law for the system of interest in the exponential form of a redefined Hamiltonian and corrected Boltzmann temperature that reflects the modification due to strong system-bath coupling and the large but finite bath.
We investigate the entanglement for a model of a particle moving in the lattice (many-body system). The interaction between the particle and the lattice is modelled using Hookes law. The Feynman path integral approach is applied to compute the densit y matrix of the system. The complexity of the problem is reduced by considering two-body system (bipartite system). The spatial entanglement of ground state is studied using the linear entropy. We find that increasing the confining potential implies a large spatial separation between the two particles. Thus the interaction between the particles increases according to Hookes law. This results in the increase in the spatial entanglement.
221 - Yacine Ikhlef 2010
We review the exact results on the various critical regimes of the antiferromagnetic $Q$-state Potts model. We focus on the Bethe Ansatz approach for generic $Q$, and describe in each case the effective degrees of freedom appearing in the continuum limit.
We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs to this class, and more broadly whether the susceptibility is a solution of a differentially algebraic equation. Initial results on Tuttes non-linear ordinary differential equation (ODE) and other simple quadratic non-linear ODEs suggest that a large set of differentially algebraic power series solutions with integer coefficients might reduce to algebraic functions modulo primes, or powers of primes. Here we give several examples of series with integer coefficients and non-zero radius of convergence that reduce to algebraic functions modulo (almost) every prime (or power of a prime). These examples satisfy differentially algebraic equations with the encoding polynomial occasionally possessing quite high degree (and thus difficult to identify even with long series). Additionally, we have extended both the high- and low-temperature Ising square-lattice susceptibility series to 5043 coefficients. We find that even this long series is insufficient to determine whether it reduces to algebraic functions modulo $3$, $5$, etc. This negative result is in contrast to the comparatively easy confirmation that the corresponding series reduce to algebraic functions modulo powers of $2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا