ﻻ يوجد ملخص باللغة العربية
We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterers. As a result, this evolution does not conserve momentum but only mass and energy. We prove that the diffusively rescaled $f^varepsilon(x,v,t)=f(varepsilon^{-1}x,v,varepsilon^{-2}t)$, as $varepsilonto 0$ tends to a Maxwellian $M_{rho, 0, T}=frac{rho}{(2pi T)^{3/2}}exp[{-frac{|v|^2}{2T}}]$, where $rho$ and $T$ are solutions of coupled diffusion equations and estimate the error in $L^2_{x,v}$.
The quantitative information on the spectral gaps for the linearized Boltzmann operator is of primary importance on justifying the Boltzmann model and study of relaxation to equilibrium. This work, for the first time, provides numerical evidences on
The theory of probability shows that, as the fraction $X_n/Yto 0$, the conditional probability for $X_n$, given $X_n+Y in h_{delta}:=[h, h+delta]$, has a limit law $f_{X_n}(x)e^{-psi_n(h_delta)x}$, where $psi_n(h_delta) $ equals to $[partial ln P(Y i
We consider similarity solutions of the generalized convection-diffusion-reaction equation with both space- and time-dependent convection, diffusion and reaction terms. By introducing the similarity variable, the reaction-diffusion equation is reduce
We consider an ensemble of Ornstein-Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding t
In this paper, we study the diffusive limit of solutions to the generalized Langevin equation (GLE) in a periodic potential. Under the assumption of quasi-Markovianity, we obtain sharp longtime equilibration estimates for the GLE using techniques fro