ﻻ يوجد ملخص باللغة العربية
This paper presents a new technique for optimizing formal analysis of propositional logic formulas and Linear Temporal Logic (LTL) formulas, namely the formula simplification table. A formula simplification table is a mathematical table that shows all possible simplifications of the formula under different truth assignments of its variables. The advantages of constructing a simplification table of a formula are two-fold. First, it can be used to compute the logical influence weight of each variable in the formula, which is a metric that shows the importance of the variable in affecting the outcome of the formula. Second, it can be used to identify variables that have the highest logical influences on the outcome of the formula. %The simplification table can be used to optimize %existing solutions for several interesting %LTL verification problems. We demonstrate the effectiveness of formula simplification table in the context of software verification by developing efficient framework to the well-known decentralized LTL monitoring problem.
This paper presents a novel framework for decentralized monitoring of Linear Temporal Logic (LTL), under the situation where processes are synchronous, uniform (i.e. all processes are peers), and the formula is represented as a tableau. The tableau t
In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given
This continuously extended technical report collects and compares commonly used formulae from the literature and provides them in a machine readable way.
In this paper we present a portfolio LTL-satisfiability solver, called Polsat. To achieve fast satisfiability checking for LTL formulas, the tool integrates four representative LTL solvers: pltl, TRP++, NuSMV, and Aalta. The idea of Polsat is to run
We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time