ﻻ يوجد ملخص باللغة العربية
In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given specification, reasoning about quality addresses the question of emph{how well} the system satisfies the specification. One direction in this effort is to refine the eventually operators of temporal logic to {em discounting operators}: the satisfaction value of a specification is a value in $[0,1]$, where the longer it takes to fulfill eventuality requirements, the smaller the satisfaction value is. In this paper we introduce an augmentation by discounting of Linear Temporal Logic (LTL), and study it, as well as its combination with propositional quality operators. We show that one can augment LTL with an arbitrary set of discounting functions, while preserving the decidability of the model-checking problem. Further augmenting the logic with unary propositional quality operators preserves decidability, whereas adding an average-operator makes some problems undecidable. We also discuss the complexity of the problem, as well as various extensions.
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One o
This continuously extended technical report collects and compares commonly used formulae from the literature and provides them in a machine readable way.
In this paper we present a portfolio LTL-satisfiability solver, called Polsat. To achieve fast satisfiability checking for LTL formulas, the tool integrates four representative LTL solvers: pltl, TRP++, NuSMV, and Aalta. The idea of Polsat is to run
Propositional linear time temporal logic (LTL) is the standard temporal logic for computing applications and many reasoning techniques and tools have been developed for it. Tableaux for deciding satisfiability have existed since the 1980s. However, t
There is increasing interest in applying verification tools to programs that have bitvector operations (eg., binaries). SMT solvers, which serve as a foundation for these tools, have thus increased support for bitvector reasoning through bit-blasting