ﻻ يوجد ملخص باللغة العربية
We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time variables which enable the elicitation of complex real-time requirements. For this fragment, we provide an efficient polynomial time algorithm for off-line monitoring of finite traces. Finally, we provide experimental results on a prototype implementation of our tool in order to demonstrate the feasibility of using our tool in practical applications.
The synthesis of reactive systems from linear temporal logic (LTL) specifications is an important aspect in the design of reliable software and hardware. We present our adaption of the classic automata-theoretic approach to LTL synthesis, implemented
This paper presents an efficient suboptimal model predictive control (MPC) algorithm for nonlinear switched systems subject to minimum dwell time constraints (MTC). While MTC are required for most physical systems due to stability, power and mechanic
This paper presents a novel framework for decentralized monitoring of Linear Temporal Logic (LTL), under the situation where processes are synchronous, uniform (i.e. all processes are peers), and the formula is represented as a tableau. The tableau t
This paper presents a new technique for optimizing formal analysis of propositional logic formulas and Linear Temporal Logic (LTL) formulas, namely the formula simplification table. A formula simplification table is a mathematical table that shows al
We present a system called Adelfa that provides mechanized support for reasoning about specifications developed in the Edinburgh Logical Framework or LF. Underlying Adelfa is a new logic named L_LF. Typing judgements in LF are represented by atomic f