ترغب بنشر مسار تعليمي؟ اضغط هنا

D-Optimal Design for the Rasch Counts Model with Multiple Binary Predictors

100   0   0.0 ( 0 )
 نشر من قبل Rainer Schwabe
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we derive optimal designs for the Rasch Poisson counts model and the Rasch Poisson-Gamma counts model incorporating several binary predictors for the difficulty parameter. To efficiently estimate the regression coefficients of the predictors, locally D-optimal designs are developed. After an introduction to the Rasch Poisson counts model and the Rasch Poisson-Gamma counts model we will specify these models as a particular generalized linear mixed model. Based on this embedding optimal designs for both models including several binary explanatory variables will be presented. Therefore, we will derive conditions on the effect sizes of certain designs to be locally D-optimal. Finally, it is pointed out that the results derived for the Rasch Poisson models can be applied for more general Poisson regression models which should receive more attention in future psychological research.



قيم البحث

اقرأ أيضاً

A central goal in designing clinical trials is to find the test that maximizes power (or equivalently minimizes required sample size) for finding a true research hypothesis subject to the constraint of type I error. When there is more than one test, such as in clinical trials with multiple endpoints, the issues of optimal design and optimal policies become more complex. In this paper we address the question of how such optimal tests should be defined and how they can be found. We review different notions of power and how they relate to study goals, and also consider the requirements of type I error control and the nature of the policies. This leads us to formulate the optimal policy problem as an explicit optimization problem with objective and constraints which describe its specific desiderata. We describe a complete solution for deriving optimal policies for two hypotheses, which have desired monotonicity properties, and are computationally simple. For some of the optimization formulations this yields optimal policies that are identical to existing policies, such as Hommels procedure or the procedure of Bittman et al. (2009), while for others it yields completely novel and more powerful policies than existing ones. We demonstrate the nature of our novel policies and their improved power extensively in simulation and on the APEX study (Cohen et al., 2016).
This is a chapter of the forthcoming Handbook of Multiple Testing. We consider a variety of model selection strategies in a high-dimensional setting, where the number of potential predictors p is large compared to the number of available observations n. In particular modifications of information criteria which are suitable in case of p > n are introduced and compared with a variety of penalized likelihood methods, in particular SLOPE and SLOBE. The focus is on methods which control the FDR in terms of model identification. Theoretical results are provided both with respect to model identification and prediction and various simulation results are presented which illustrate the performance of the different methods in different situations.
Although multivariate count data are routinely collected in many application areas, there is surprisingly little work developing flexible models for characterizing their dependence structure. This is particularly true when interest focuses on inferri ng the conditional independence graph. In this article, we propose a new class of pairwise Markov random field-type models for the joint distribution of a multivariate count vector. By employing a novel type of transformation, we avoid restricting to non-negative dependence structures or inducing other restrictions through truncations. Taking a Bayesian approach to inference, we choose a Dirichlet process prior for the distribution of a random effect to induce great flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for posterior computation. We prove various theoretical properties, including posterior consistency, and show that our COunt Nonparametric Graphical Analysis (CONGA) approach has good performance relative to competitors in simulation studies. The methods are motivated by an application to neuron spike count data in mice.
In this paper we derive locally D-optimal designs for discrete choice experiments based on multinomial probit models. These models include several discrete explanatory variables as well as a quantitative one. The commonly used multinomial logit model assumes independent utilities for different choice options. Thus, D-optimal optimal designs for such multinomial logit models may comprise choice sets, e.g., consisting of alternatives which are identical in all discrete attributes but different in the quantitative variable. Obviously such designs are not appropriate for many empirical choice experiments. It will be shown that locally D-optimal designs for multinomial probit models supposing independent utilities consist of counterintuitive choice sets as well. However, locally D-optimal designs for multinomial probit models allowing for dependent utilities turn out to be reasonable for analyzing decisions using discrete choice studies.
We study approaches to robust model-based design of experiments in the context of maximum-likelihood estimation. These approaches provide robustification of model-based methodologies for the design of optimal experiments by accounting for the effect of the parametric uncertainty. We study the problem of robust optimal design of experiments in the framework of nonlinear least-squares parameter estimation using linearized confidence regions. We investigate several well-known robustification frameworks in this respect and propose a novel methodology based on multi-stage robust optimization. The proposed methodology aims at problems, where the experiments are designed sequentially with a possibility of re-estimation in-between the experiments. The multi-stage formalism aids in identifying experiments that are better conducted in the early phase of experimentation, where parameter knowledge is poor. We demonstrate the findings and effectiveness of the proposed methodology using four case studies of varying complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا