ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust multi-stage model-based design of optimal experiments for nonlinear estimation

158   0   0.0 ( 0 )
 نشر من قبل Radoslav Paulen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study approaches to robust model-based design of experiments in the context of maximum-likelihood estimation. These approaches provide robustification of model-based methodologies for the design of optimal experiments by accounting for the effect of the parametric uncertainty. We study the problem of robust optimal design of experiments in the framework of nonlinear least-squares parameter estimation using linearized confidence regions. We investigate several well-known robustification frameworks in this respect and propose a novel methodology based on multi-stage robust optimization. The proposed methodology aims at problems, where the experiments are designed sequentially with a possibility of re-estimation in-between the experiments. The multi-stage formalism aids in identifying experiments that are better conducted in the early phase of experimentation, where parameter knowledge is poor. We demonstrate the findings and effectiveness of the proposed methodology using four case studies of varying complexity.



قيم البحث

اقرأ أيضاً

We review recent literature that proposes to adapt ideas from classical model based optimal design of experiments to problems of data selection of large datasets. Special attention is given to bias reduction and to protection against confounders. Som e new results are presented. Theoretical and computational comparisons are made.
Many robotics domains use some form of nonconvex model predictive control (MPC) for planning, which sets a reduced time horizon, performs trajectory optimization, and replans at every step. The actual task typically requires a much longer horizon tha n is computationally tractable, and is specified via a cost function that cumulates over that full horizon. For instance, an autonomous car may have a cost function that makes a desired trade-off between efficiency, safety, and obeying traffic laws. In this work, we challenge the common assumption that the cost we optimize using MPC should be the same as the ground truth cost for the task (plus a terminal cost). MPC solvers can suffer from short planning horizons, local optima, incorrect dynamics models, and, importantly, fail to account for future replanning ability. Thus, we propose that in many tasks it could be beneficial to purposefully choose a different cost function for MPC to optimize: one that results in the MPC rollout having low ground truth cost, rather than the MPC planned trajectory. We formalize this as an optimal cost design problem, and propose a zeroth-order optimization-based approach that enables us to design optimal costs for an MPC planning robot in continuous MDPs. We test our approach in an autonomous driving domain where we find costs different from the ground truth that implicitly compensate for replanning, short horizon, incorrect dynamics models, and local minima issues. As an example, the learned cost incentivizes MPC to delay its decision until later, implicitly accounting for the fact that it will get more information in the future and be able to make a better decision. Code and videos available at https://sites.google.com/berkeley.edu/ocd-mpc/.
142 - Yunan Wu , Lan Wang 2019
We propose a new procedure for inference on optimal treatment regimes in the model-free setting, which does not require to specify an outcome regression model. Existing model-free estimators for optimal treatment regimes are usually not suitable for the purpose of inference, because they either have nonstandard asymptotic distributions or do not necessarily guarantee consistent estimation of the parameter indexing the Bayes rule due to the use of surrogate loss. We first study a smoothed robust estimator that directly targets the parameter corresponding to the Bayes decision rule for optimal treatment regimes estimation. This estimator is shown to have an asymptotic normal distribution. Furthermore, we verify that a resampling procedure provides asymptotically accurate inference for both the parameter indexing the optimal treatment regime and the optimal value function. A new algorithm is developed to calculate the proposed estimator with substantially improved speed and stability. Numerical results demonstrate the satisfactory performance of the new methods.
Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modelling assumption for such experiments is that responses from units within a block are dependent. Accounting for such dependencies in both the design of the experiment and the modelling of the resulting data when the response is not normally distributed can be challenging, particularly in terms of the computation required to find an optimal design. The application of copulas and marginal modelling provides a computationally efficient approach for estimating population-average treatment effects. Motivated by an experiment from materials testing, we develop and demonstrate designs with blocks of size two using copula models. Such designs are also important in applications ranging from microarray experiments to experiments on human eyes or limbs with naturally occurring blocks of size two. We present methodology for design selection, make comparisons to existing approaches in the literature and assess the robustness of the designs to modelling assumptions.
72 - Jun Suzuki 2020
In this paper, we study the quantum-state estimation problem in the framework of optimal design of experiments. We first find the optimal designs about arbitrary qubit models for popular optimality criteria such as A-, D-, and E-optimal designs. We a lso give the one-parameter family of optimality criteria which includes these criteria. We then extend a classical result in the design problem, the Kiefer-Wolfowitz theorem, to a qubit system showing the D-optimal design is equivalent to a certain type of the A-optimal design. We next compare and analyze several optimal designs based on the efficiency. We explicitly demonstrate that an optimal design for a certain criterion can be highly inefficient for other optimality criteria.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا