ﻻ يوجد ملخص باللغة العربية
This is a chapter of the forthcoming Handbook of Multiple Testing. We consider a variety of model selection strategies in a high-dimensional setting, where the number of potential predictors p is large compared to the number of available observations n. In particular modifications of information criteria which are suitable in case of p > n are introduced and compared with a variety of penalized likelihood methods, in particular SLOPE and SLOBE. The focus is on methods which control the FDR in terms of model identification. Theoretical results are provided both with respect to model identification and prediction and various simulation results are presented which illustrate the performance of the different methods in different situations.
In this paper, we derive optimal designs for the Rasch Poisson counts model and the Rasch Poisson-Gamma counts model incorporating several binary predictors for the difficulty parameter. To efficiently estimate the regression coefficients of the pred
Standardization has been a widely adopted practice in multiple testing, for it takes into account the variability in sampling and makes the test statistics comparable across different study units. However, despite conventional wisdom to the contrary,
In meta-analyses, publication bias is a well-known, important and challenging issue because the validity of the results from a meta-analysis is threatened if the sample of studies retrieved for review is biased. One popular method to deal with public
We propose a new adaptive empirical Bayes framework, the Bag-Of-Null-Statistics (BONuS) procedure, for multiple testing where each hypothesis testing problem is itself multivariate or nonparametric. BONuS is an adaptive and interactive knockoff-type
We revisit the problem of simultaneously testing the means of $n$ independent normal observations under sparsity. We take a Bayesian approach to this problem by introducing a scale-mixture prior known as the normal-beta prime (NBP) prior. We first de